
Your Name (first last)

← Name of person on left (or aisle)

UC Berkeley CS61C

Fall 2019 Midterm

TA name

SID

Name of person on right (or aisle) →

Fill in the correct circles & squares completely…like this: ⬤ (select ONE), and ⬛(select ALL that apply)

Quest-clobber question: Q3

When you see SHOW YOUR WORK, that means a correct answer without work will receive
NO CREDIT, and your work needs to show how you were led to the answer you reached. If you find
that there are multiple correct answers to a “select ONE” question, please choose just one of them.

This page has been intentionally left blank

Q1) Float, float on... (7 pts = 2 + 3 + 2)

You notice that floats can generally represent much larger numbers than integers, and decide to make a
modified RISC instruction format in which all immediates for jump instructions are treated as 12-bit floating
point numbers with a mantissa of 7 bits and with a standard exponent bias of 7. Hint: Refer to reference sheet
for the floating point formula if you’ve forgotten it...the same ideas hold even though this is only a 12-bit float…

a) To jump the farthest, you set the float to be
the most positive (not ∞) integer representable.
What are those 12 bits (in hex)?

b) What is the value of
that float (in decimal)?

c) Between 0 and (b)’s answer
(inclusive), how many integers
are not representable?

0x77F

255

0

Part A

Since you want the most positive float, the sign bit should be 0. For the exponent, you want the second
biggest possible exponent, as the biggest possible exponent is always used for NaN and infinity. With 4
exponent bits, the largest possible number is 1111 or 15, so the second largest is 1110, or 14 (as an
unsigned number; with the bias, this becomes 27).

With an exponent of 27 and 7 mantissa bits, when you multiply 1.<mantissa> by the exponent, the decimal
point will end up right after the last mantissa bit. This means every number representable with an exponent
of 27 is an integer, so you just need the largest one (which will be when you have all 1’s). Putting the three
parts together, 0 -- 1110 --1111111 is 0x77F.

Part B

The value of the float above will be (-1)0 * 27 * 1.1111111 = 11111111.0 in binary, or 255.

Part C

For an exponent of 27 with 7 mantissa bits you have a step size of 2-7 * 27 = 20 = 1. This means every integer
between 0 and 255 is representable.

Q2) CALL me maybe? (5 pts)

For each of the following questions, determine what stage of
CALL the following actions can happen. Select ONE per row. Compiler Assembler Linker Loader

a) The imm in jal LABEL gets replaced with its final value. Note
that LABEL lives in a different file than the jal LABEL instruction.

◯ ◯ ⬤ ◯

If the label lived within the same file the assembler would be able to resolve it. Since it does not, the Linker
must use the symbol tables of the different objects is linking to resolve it.

b) Pseudoinstructions are removed ◯ ⬤ ◯ ◯

The assembler generates machine code which means we need to remove pseduo-instructions and replace
them with their TAL equivalents to do this.

c) Outputs assembly language code ⬤ ◯ ◯ ◯

Remember the compiler outputs assembly language code. The assembler outputs machine code.

d) The symbol table is read by ◯ ◯ ⬤ ◯

The symbol table is generated by the assembler. The linker uses the symbol tables of the files it is linking
together to resolve jal labels.

e) Copies arguments passed to the program onto the stack ◯ ◯ ◯ ⬤

The loader takes the linked programs file which was generated by the linker and puts it into your computer's
memory. The loader also sets up the different memory spaces including passing in arguments to the stack.

Q3) I thought I needed to do a 2s but it was really just a sign-mag?! (20 pts = 7*2 + 6)

You recover an array of critical 32-bit data from a time capsule and find it was encoded in sign-magnitude!
Write the ConvertTo2sArray function in C that converts all the data to 2s complement. You are told that
0x00000000 was never used to record any actual data, and is the array terminator (just as you do for strings).
ConvertTo2s does the actual conversion for each number. Select ONE per letter; for <h> fill in the blank.

 void ConvertTo2sArray(<a> A) {
 while () {
 if (<c>)
 ConvertTo2s(<d>);
 <e> ;
 }

 }

 void ConvertTo2s(<f> B) {
 <g> = <h> ;
 }

<a> ◯ int32_t ⬤ int32_t *
 ◯ true ◯ false ◯ A ⬤ *A

<c>

 ◯ A < 0 ⬤ *A < 0 ◯ A
 ◯ A > 0 ◯ *A > 0 ◯ *A
 ◯ A <= 0 ⬤ *A <= 0 ◯ true
 ◯ A >= 0 ◯ *A >= 0 ◯ false

<d> ◯ &A ⬤ A ◯ *A
<e> ⬤ A = A + 1 ◯ *A = *A + 1
<f> ◯ int32_t ⬤ int32_t *
<g> ◯ &B ◯ B ⬤ *B

<h>

Some valid answers:

~(*B & 0×7FFFFFFF)+1;

-(*B & 0x7FFFFFFF);

-(*B + (1<<31));

(*B - 1) ^ 0x7FFFFFFF;

~((∗B<<1)>>1)+1;

(*B ^ 0x7FFFFFFF) + 1;

With Sign and magnitude (SM), the most significant bit (MSB, aka leftmost bit) represents sign, and the remaining bits
represent magnitude. A positive SM number has a MSB of 0, negative SM has MSB of 1. With 2’s complement (2’s),
positive numbers look identical to how they would with SM. However, to get negative 2’s numbers, remember we take
the positive number representation, flip each bit, and then add 1. A key observation is that positive SM and 2’s numbers
are represented identically (thus our condition in <c> isn’t called for these positive numbers). Thus the chief job of the
function ConvertTo2s is to take a negative SM number and convert it to a negative 2’s number.

The most intuitive strategy for this is to take the negative SM number, set the MSB to 0 to give us the positive
magnitude, and then convert this positive magnitude to 2’s by flipping all bits and adding 1. *B gives us the number we
want to work with, and 0x7FFFFFFF is a mask of a single 0 bit followed by thirty-one 1 bits (note MSB for this mask is
0). ‘and’ing with such a mask will set the MSB to 0 (any bit ‘and’ed with 0 equals 0), and leaves all other bits unchanged
(any bit ‘and’ed with 1 is unchanged). Thus (*B & 0x7FFFFFFF) will flip the MSB of the negative SM number, giving us
just the positive magnitude. We can then use the formula ~(positive magnitude)+1 to convert the positive magnitude to
a negative 2’s number, giving us the full expression of ~(*B & 0x7FFFFFFF)+1. Check out this article for a more
concrete example explaining this process: http://cseweb.ucsd.edu/classes/fa99/cse141l/ass1update.htm

Alternatively we can just apply the unary negation operator ‘-’ on the positive magnitude to get the negative 2’s number:
-(*B & 0x7FFFFFFF), since C uses 2’s to store signed ints, so the ‘-’ operator invokes 2’s rules of ~(...)+1 to negate.

Another method is to cause the negative SM number to overflow: (*B + (1 << 31)). The (1 << 31) just sets the mask
MSB to 1, and ‘add’ing this mask effectively ‘add’s 1 to the SM number’s MSB of 1, overflowing the resulting MSB to 0,
giving us the positive magnitude. We now can use the unary negation operator ‘-’ to get the negative 2’s number. This
approach gives a final formula of -(*B + (1 << 31)).

http://cseweb.ucsd.edu/classes/fa99/cse141l/ass1update.htm

Q4) !noitseuq V-CSIR taerg a s’ereH (20 pts = 12 + 4 + 4)
a) Below you will find the standard definition for a linked-list node. The recursive C code below reverses a
linked list with at least one node. (For the initial call, the head of the list would be the first parameter, and the
second parameter would be NULL) Your project partner translated this to nice RISC-V 32-bit code which honors
the RISC-V calling conventions. Unfortunately, you spilled boba on it rendering it much of unreadable, and now
you need to reconstruct it. Our solution used every line, but if you need more lines, just write them to the right
of the line they’re supposed to go after and put semicolons between them (like you would do in the C
language). Don’t waste time trying to understand the algorithm for reverse, just compile it line-by-line.

struct node_struct {
 int32_t value;
 struct node_struct *next;
}
typedef struct node_struct Node;

Node *reverse(Node *node, Node *prev) { // Requires: node != NULL
 Node *second = node->next;
 node->next = prev;
 if (second == NULL) { return node; }
 return reverse(second, node); }

reverse:

 lw t0, 4(a0) ### Node *second = node->next; (node->next addr = 4(a0))

 sw a1, 4(a0) ### node->next = prev (node->next addr = 4(a0), prev = a0)

 beq x0, t0, returnnode ### if (second == NULL) { return node; }

 mv a1, a0 ### 2ndarg = node

 mv a0, t0 ### 1starg = second

 addi sp, sp, -4 ### prologue: move stack down

 sw ra, 0(sp) ### prologue: store ra

 jal ra reverse ### return reverse(second, node); (recurse, ret val in a0)

 lw ra, 0(sp) ### epilogue: restore ra

 addi sp, sp, 4 ### epilogue: restore the stack

returnnode:

 jr ra ### return

Now assume all blanks above contain a single instruction (no more, no less).
b) The address of reverse is 0x12345678.

What is the hex value for the machine code of beq x0, t0, returnnode? 0x02500063

c) The user adds a library and this time the address of reverse is 0x76543210.

What is the hex value for the machine code of beq x0, t0, returnnode? 0x02500063

Part B

beq x0, t0, returnnode moves the PC (program counter) forward by 8 instructions, each of which is 1
word or 4 bytes. This means the immediate = 8 * 4 = 32.

In binary, we represent 32 as 0b100000. However, since we know branch/jump immediates are always even
numbers, we don’t store bit 0.

imm[12] imm[10:5] rs2 rs1 func3 imm[4:1] imm[11] opcode

31 30 - 25 24 - 20 19 - 15 14 - 12 11 - 8 7 6 - 0

0 000001 00101 00000 000 0000 0 1100011

0000 0010 0101 0000 0000 0000 0110 0011

0 2 5 0 0 0 6 3

Part C

Since the number of instructions between the branch and its label does not change, the immediate value
should not change regardless of the location since branches’ immediates are relative to the current
instruction.

Q5) What kind of Algebra do ghosts like? Boooooolean Algebra! (20 pts = 7 + 7 + 6)
Write an FSM that takes in an n-bit binary number (starting with the MSB, ending with the LSB) and performs a
logical right shift by 2 on the input. E.g., if our input is 0b01100, then our FSM should output 0b00011.

Input (MSB → LSB) 0 1 1 0 0

Output 0 0 0 1 1

a) Fill in the following FSM with the correct transitions and outputs. Format state changes as (input / output);
we’ve done two for you. This is the minimum number of states; you may not add any more.

State 00 means ‘two most recent inputs are 00’, so an output FROM this state will always be 0.
State 01 means ‘two most recent inputs are 01’, so an output from this state will always be 0.
State 10 means ‘two most recent inputs are 10’, so an output from this state will always be 1.
State 11 means ‘two most recent inputs are 11’, so an output from this state will always be 1.

Note that the output from any state is always the second most recent input for that state. Based on the next
input, we transition to the according state, and use this the aforementioned output rule to determine what the
transition’s output value is.

An aside: it is important to note that in general, the binary name of a state (in this case 00/01/10/11) has NO
association with what that state represents - it is up to you, the FSM designer, to determine what each state
represents. We could have equivalently named the four states something like 11/10/01/00 respectively and
kept the same state meanings (state 11 means ‘most recent are 00’, ...), and still have a perfectly valid FSM.
We provided state names of 00/01/10/11 as a helpful/useful hint towards what the meanings of the four states
should be. To summarize, for any FSM with N states, we cleverly give each of these N states a meaning, and
then can somewhat arbitrarily give these N states a binary name. Remember, we can use these binary names
for states to convert the FSM into a truth-table/circuit where there’s an input, register storing current state (by
its binary name) and some combinational logic to determine truth-table/circuit output and update the register
with the new state; this combinational logic is determined by the transitions in the FSM.

b) Draw the FULLY SIMPLIFIED (fewest number of primitive gates) circuit for the equation below.
You may use the following primitive gates: AND, NAND, OR, NOR, XOR, XNOR, and NOT.

SHOW YOUR WORK FOR PART (b) BELOW
ut (A BB) (B A)(A BC)o = + + + +

ut (A) (B A)(A BC) o = + + + Apply inverse law to B B

ut (A) o = + (BA AA BBC ABC)+ + + Apply distributive law

ut (A) o = + (BA BC ABC)+ + Apply inverse + idempotent laws

ut (A) o = + (B(A C AC))+ + Apply distributive law

ut (A) o = + (B)(A C))+ Apply absorption law

ut (A) o = + (B) + (A C)+ Apply DeMorgan’s law

ut (A) A)(C) o = + (B) + (Apply DeMorgan’s law

ut (A) o = + (B) Apply absorption law

ut (A)(B) o = Apply DeMorgan’s law

c) Assume Input comes from a register, and that there are no hold time violations. What’s the fastest
frequency you can run your clock for this circuit so that it executes correctly? Write your answer as a
mathematical expression (you can also use min(), max(), abs(), and other simple operations if needed) using
these variables: X = XOR delay, N = NOT delay, C = tclk-to-Q, S = tsetup, H = thold

=1
max(C + X + S, C + N + S)

1
C + S + max(X , N)

Explanation: we start by looking for the longest path in our circuit. There are three paths to consider: (1)
Input ⇒ XOR ⇒ Register, (2) Register ⇒ XOR ⇒ Register, and (3) Register ⇒ NOT ⇒ Register. We know
input comes from a register, so (1) and (2) are equivalent.

The time it will take (2) to execute properly is clk-to-Q + XOR delay + setup time, and the time it will take (3)
to execute properly is clk-to-Q + NOT delay + setup time. We don’t know whether N > X, so we take the
maximum of both values.

Because we’re looking for frequency, we want to know how many times this happens each second, which
is why we have an expression under 1.

Q6) comp a0, RISC-V, <3 (18 pts = 5*1 + 7*1 + 4 + 2)

You add a new R-Type signed compare instruction
called comp, into the RISC-V single-cycle datapath, to
compare R[rs1] and R[rs2] and set R[rd]
appropriately. The RTL for it is shown on the right.

 comp rd, rs1, rs2

 if R[rs1] > R[rs2]: R[rd] = 1

 elif R[rs1] == R[rs2]: R[rd] = 0

 else: do nothing

a) You want to change the datapath to make this work. You start by adding two more inputs (0x00000000 and
0x00000001) to the rightmost WBSel MUX. What else is required to make this instruction work?

◯ True ⬤ False Modify Branch Comp
◯ True ⬤ False Modify Imm. Gen.
◯ True ⬤ False Modify the ALU and ALUSel control signals
⬤ True ◯ False Modify the control logic for RegWEn
◯ True ⬤ False Modify the control logic for MemWEn

The only change necessary on top of adding new inputs to the WBSel MUX is to change the logic for RegWEn so
that for COMP instructions, it is 1 only if R[rs1] >= R[rs2].

b) You realize you can also implement this with NO changes to the datapath! From this point until the end of
the page, let’s assume that’s what we’re going to do. Fill in the control signals for it. We did the first one, COMP,
which is a new boolean variable within the control logic that is only set to 1 when we have a comp instruction.

 COMP PCSel BrUn BSel ASel ALUSel MemRW WBSel

comp x1, x2, x3
⬤ 1
 ◯ 0

◯ ALU
⬤ PC+4

◯ 1
⬤ 0

◯ 1
⬤ 0

◯ 1
⬤ 0

◯ ADD
◯ SUB
⬤
OTHER

⬤ Read
◯ Write

◯ PC+4
⬤ ALU
◯ MEM

● comp is not a branch or jump, so PCSel should be PC + 4 -- after comp, we always want to execute the
next instruction in sequence

● BrUn should be 0, because in the case if R[rs1] > R[rs2], we want to do a signed comparison. If we
were only looking at R[rs1] == R[rs2], it wouldn’t matter what BrUn was

● We’ll be doing the comparison in the ALU, so ASel and BSel should be 0, so that both inputs are
registers

● ALUSel should be other, since we’re adding a new operation to the ALU, which will output 0, 1, or don’t
care (when comp doesn’t write) for the input R[rs1] and R[rs2]

● MemRW should be read -- only operations that modify memory (e.g. store word) should have this set to 1
or Write

● WBSel should be ALU, since we’re getting our modified output of 0 / 1 from the ALU Note: We are fine
with outputting a 0 / 1 into the Regfile since we would disable the RegWEn if the comparison was less.

c) The control signal RegWEn can be represented by the Boolean expression “add+addi+sub+...” (where add
is only 1 for add instructions, addi is only 1 for addi instructions, etc.). What new Boolean expression should
we add (i.e., Boolean logic “or”) to the original RegWEn expression to handle the comp instruction? Select ONE.
◯COMP ◯COMP*BrLT ◯COMP*BrEq ⬤COMP*!BrLT ◯COMP*!BrEq

◯COMP*(!BrLT+!BrEq) ◯COMP*(BrLT+!BrEq) ⬤COMP*(!BrLT+BrEq) ◯COMP*(BrLT+BrEq)

A comp instruction writes back to the RegFile in two cases: (1) if R[rs1] > R[rs2] and (2) if R[rs1] ==
R[rs2]. This is essentially equivalent to when R[rs1] is NOT less than R[rs2]. This is where we get the
answer COMP*!BrLT.

For comp in particular, it’s also the case that we always write when BrEq is true -- this means there’s an
additional (if less efficient) correct answer: COMP*(!BrLT+BrEq).

d) Select all of the stages of the datapath this instruction will use. Select all that apply.
⬛Instruction fetch (IF) ⬛Instruction decode (ID) ⬛Execute (EX) ▢Memory (MEM) ⬛Writeback (WB)

Every instruction uses the IF, ID, and EX stages -- every instruction must be fetched and decoded, and every
instruction uses the ALU for some purpose, either to perform an arithmetic/logical operation or to calculate an
address.

Only load and store instructions use the MEM stage; comp does not modify memory or retrieve data from
memory, so this stage isn’t needed.

Some instructions (specifically store and branch instructions) do not modify the RegFile; they have no
destination register (rd). comp does have a destination register, and should use the WB stage.

