
CS 61A Structure and Interpretation of Computer Programs
Fall 2017 Final

INSTRUCTIONS

� You have 3 hours to omplete the exam.

� The exam is losed book, losed notes, losed omputer, losed alulator, exept three hand-written 8.5" × 11"

rib sheets of your own reation and the o�ial CS 61A midterm study guides.

� Mark your answers on the exam itself. We will not grade answers written on srath paper.

Last name

First name

Student ID number

CalCentral email (_�berkeley.edu)

TA

Name of the person to your left

Name of the person to your right

All the work on this exam is my own.

(please sign)

POLICIES & CLARIFICATIONS

� If you need to use the restroom, bring your phone and exam to the front of the room.

� Before asking a question, read the announements on the sreen/board. We will not answer your question

diretly. If we deide to respond, we'll add our response to the sreen/board so everyone an see the lari�ation.

� For �ll-in-the blank oding problems, we will only grade work written in the provided blanks. You may only

write one Python statement per blank line, and it must be indented to the level that the blank is indented.

� Unless otherwise spei�ed, you are allowed to referene funtions de�ned in previous parts of the same question.

http://berkeley.edu

2

1. (10 points) Calling All Values

For eah of the expressions in the table below, write the output displayed by the interative Python interpreter

when the expression is evaluated. The output may have multiple lines. The interative interpreter displays the

repr string of the value of a suessfully evaluated expression, unless it is None. Write �FUNC� to indiate a

funtional value.

The �rst two rows have been provided as an example.

Assume that you have started python3 and exeuted all the ode to the left of the table �rst.

fandv = lambda f, x: [f, f(x)℄

def pv(v):

print(v)

return v

dbl = lambda x: 2*x

Idbl = lambda: pv(lambda x: x) or pv(dbl)

def upto(n):

items = [℄

for i in range(n):

items.append(i)

yield items

def av(v):

v.append(-1)

return v

def r(f, n):

def g(y): return [n, f(y)℄

return r(g, n // 2) if n>2 else g(n)

def mx(x):

x += 3

Expression Interative Output

[2, 3℄ [2, 3℄

print((2, 3)) (2, 3)

fandv(print, print)

Idbl()(pv(17) and pv(1))

[av(x) for x in upto(2)℄[0℄

r(lambda x: x, 9)

z=4

mx(z)

print(z)

Name: 3

2. (10 points) Environmentally Friendly

Fill in the environment diagram that results from exeuting the ode below until the entire program is �nished,

an error ours, or all frames are �lled. You may not need to use all of the spaes or frames.

A omplete answer will:

� Add all missing names and parent annotations to frames.

� Add all missing values reated or referened during exeution.

� Show the return value for eah loal frame.

� Use box-and-pointer notation for list values. You do not need to write index numbers or the word �list�.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

def ie():

vi = [3,2,1,[0℄℄

vi = vi.pop()

vi.append(vi)

yu = lambda y: y[y[0℄℄

def tor(ri):

def skate(vi):

nonloal yu

if yu == vi:

yu = skate

return [0℄

return yu(skate(yu))

return tor(yu)

ie()

Global frame

ie

fun ie() [parent=Global℄

f1: [parent= ℄

Return value

f2: [parent= ℄

Return value

f3: [parent= ℄

Return value

f4: [parent= ℄

Return value

4

3. (8 points) Get the Point? Fill in the environment diagram that results from exeuting eah blok of ode

below until the entire program is �nished or an error ours. Use box-and-pointer notation for lists. You don't

need to write index numbers or the word list. Erase or ross out any boxes or pointers that are not part of a

�nal diagram.

a. (3 pt)

t = [1,[2,[3℄℄,[4,5℄℄

t.append(t[:℄)

Global frame

t

b. (2 pt)

t = [1, 2, 3℄

t[1:3℄ = [t℄

t.extend(t)

Global frame

t

. (3 pt)

t = [[1,2℄,[3,4℄℄

t[0℄.append(t[1:2℄)

Global frame

t

Name: 5

4. (14 points) O! Pasal

Pasal's Triangle is perhaps familiar to you from the diagram below, whih shows the �rst �ve rows.

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

Every square is the sum of the two squares above it (as illustrated by the arrows showing here the value 4

omes from), unless it doesn't have two squares above it, in whih ase its value is 1.

(a) (4 pt) Given a linked list that represents a row in Pasal's triangle, return a linked list that will represent

the row below it. See page 2 of the Midterm 2 study guide for the de�nition of the Link lass. However, your

solution must not use L.__getitem__(k) (or L[k℄). You may not need all the lines.

def pasal_row(s):

"""

>>> a = Link.empty

>>> for _ in range(5):

... a = pasal_row(a)

... print(a)

<1>

<1 1>

<1 2 1>

<1 3 3 1>

<1 4 6 4 1>

"""

if s is Link.empty:

return __

start = Link(1)

last, urrent = start, s

while __:

__

__

__

__

return start

6

(b) (4 pt) Fill in the proedure below to reate a full Pasal Triangle of height k. Represent the entire triangle

as a linked list of the rows of the triangles, whih are also linked lists. Again, your solution must not use

L.__getitem__(k) method (or L[k℄).

def make_pasal_triangle(k):

"""

>>> make_pasal_triangle(5)

<<1> <1 1> <1 2 1> <1 3 3 1> <1 4 6 4 1>>

"""

if k == 0:

row = Link(1)

end = ___

result = end

for _ in range(k-1):

row = ___

end = ___

return result

Name: 7

() (4 pt) Pasal's Triangle ontains many patterns within it. For instane, onsider the diagonals. The �rst

diagonal (going down the left side) is just a series of 1s. The seond diagonal (onsisting of the seond elements

of eah row) is the ounting numbers. The third diagonal is the triangular numbers.

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

Ones

Counting

Triangular

Fill in the proedure below to take in a Pasal Triangle (represented by a linked list from part b) and return

a linked list ontaining the indiated diagonal. As before, your solution must not use L.__getitem__(k)

(or L[k℄), and you may not need all the lines.

def diagonal(tri, n):

"""

>>> triangle = make_pasal_triangle(5)

>>> print(diagonal(triangle, 1))

<1 1 1 1 1>

>>> print(diagonal(triangle, 2))

<1 2 3 4>

>>> print(diagonal(triangle, 3))

<1 3 6>

"""

if tri is Link.empty:

p, j = tri.first, 1

while ___:

p, j = ____________________________________, ____________________________________

if __:

return __

return __

(d) (2 pt) Cirle the Θ expression that desribes the number of integers ontained in the value of the expression

make_pasal_triangle(n).

Θ(1) Θ(logn) Θ(n) Θ(n2) Θ(2n) None of these

8

5. (13 points) Level-Headed Trees A level-order traversal of a tree, T , traverses the root of T (level 0), then

the roots of all the branhes of T (level 1) left to right, then all the roots of the branhes of the nodes traversed

in level 1, (level 2) and so forth. Thus, a level-order traversal of the tree

1

2

5 6

3

7

4

8 9

visits nodes with labels 1, 2, 3, 4, 5, 6, 7, 8, 9 in that order.

(a) (9 pt) Fill in the following generator funtion to yield the labels of a given tree in level order. All trees are

of the lass Tree, de�ned on page 2 of the Midterm 2 Study Guide. The strategy is to use a helper funtion

that yields nodes at one level, and then to all this funtion with inreasing levels until a level does not yield

any labels. You may not need all the lines.

def level_order(tree):

"""Generate all labels of tree in level order."""

def one_level(tree, k):

"""Generate the labels of tree at level k."""

if ___:

else:

for hild in __:

level, ount = 0, True

while ount:

ount = 0

__

for label in ___:

__

__

__

Name: 9

(b) (4 pt) Write a funtion that, given a Python list of values and a tree, returns whether the list ontains the

labels of the tree in level order. Assume tree is an instane of the Tree lass on your Midterm 2 Study Guide.

def same_level_order(tree, s):

"""Return True if and only if list s ontains the labels of tree in level order.

>>> t = Tree(1, [Tree(2, [Tree(3), Tree(4)℄), Tree(5)℄)

>>> same_level_order(t, [1, 2, 5, 3, 4℄)

True

>>> same_level_order(t, [1, 2, 3, 4, 5℄)

False

>>> same_level_order(t, [1, 2, 5, 3, 4, 6℄)

False

>>> same_level_order(t, [1, 2, 5, 3℄)

False

"""

k = 0

for label in __:

if _______________________________________ or _______________________________________:

return False

k += 1

return ___

10

6. (10 points) Simplify! Simplify! For this problem, onsider a very small subset of Sheme ontaining only

if expressions, (if pred then-part else-part), and atoms inluding symbols, #t for true, and #f for false.

Suh expressions an be simpli�ed aording to the following transformation rules. Here, P, E1, and E2 are

Sheme expressions in the subset, and P', E1', and E2' are their simpli�ed versions.

� The expression (if P E1 E2) simpli�es to

� E1' if P' is #t.

� E2' if P' is #f.

� E1' if E1' equals E2'.

� Otherwise, an if expression with P', E1', and E2' as the prediate, then-part, and else-part.

� Any expression, E, simpli�es to #t if E is known to be true (see below); or to #f if it is known to be false.

� Finally, in the expression (if P E1 E2), P' is known to be true while simplifying E1 and is known to be

false while simplifying E2. Initially, only #t is known to be true and only #f is known to be false.

Fill in the blanks on the next page so that (simp E) returns the simpli�ed version of E aording to these

rules, and the helper funtion (simp-ontext E known-t known-f) returns the simpli�ation of E given that

known-t is a list of expressions known to be true, and known-f is a list of expressions known to be false.

For onveniene, assume that (nth k L) is de�ned to return element k of list L (where 0 is the �rst), and that

(in? E L) is de�ned to return true if and only if E is equal? to a member of the list L.

sm> (simp '(if a b))

(if a b)

sm> (simp '(if a b b))

b

sm> (simp '(if #t (if #f a b)))

b

sm> (simp '(if a (if a b) (if a d e)))

(if a b e)

sm> (simp '(if (if #t a b) (if a d e) f))

(if a d f)

sm> (simp '(if (if a b b) (if b d) (if e f f)))

(if b f)

sm> (simp '(if (if a b) (if (if a b) x y) (if (if a b) y z)))

(if (if a b) x z)

sm> (simp '(if (if a b) (if (if a (if a b b)) d e) f))

(if (if a b) d f)

Name: 11

(define (simp expr)

(simp-ontext expr ____________________________________ ____________________________________))

(define (simp-ontext expr known-t known-f)

(define simp-expr (if (pair? expr)

(simp-if (nth 1 expr) (nth 2 expr) (nth 3 expr) known-t known-f)

expr))

(ond (___ #t)

(___ #f)

(else ___)))

(define (simp-if pred then-part else-part known-t known-f)

(let ((simp-pred (simp-ontext pred ___)))

(define simp-then

___)

(define simp-else

___)

(ond ((equal? simp-pred #t) simp-then)

(___ simp-else)

(___ simp-then)

(else __))))

12

7. (10 points) Friendship Consider the table friends, de�ned

CREATE TABLE friends AS

SELECT "Jerry" AS p1, "Neil" AS p2 UNION

SELECT "Neil" , "Jerry" UNION

SELECT "Neil" , "John" UNION

SELECT "John" , "Neil" UNION

SELECT "John" , "Paul" UNION

SELECT "Paul" , "John";

This partiular de�nition is intended as an example; your ode should work for any de�nition of friends in

whih all pairs of friends appear in both orders and people are not friends of themselves.

(a) (3 pt) De�ne a table friends2 ontaining friends-of-friends (or friends

2
). For example, Jerry and Neil are

friends, Neil and John are friends, so Jerry and John are friends of friends. Be areful! Jerry is not a seond

degree friend to himself. The olumn names should be p1 and p2, as in friends.

Expeted output:

sqlite> SELECT * FROM friends2;

Jerry|John

John|Jerry

Neil|Paul

Paul|Neil

CREATE TABLE friends2 AS

SELECT __

FROM __

WHERE ___;

Name: 13

(b) (7 pt) We ould go on to de�ne a table of friends

3
(suh as Jerry|Paul and Paul|Jerry), but let's go further

and de�ne a table of friends

5
alled friends5 that ontains pairs of friends of friends of friends of friends of

friends. We want pairs of people who are friends

5
but are not friends, friends

2
, friends

3
, or friends

4
. Our

small sample friends table has no suh pairs, alas, but we an always dream.

To tell that a pair of people are stritly friends

5
, we an build a table ontaining pairs of people plus a

�friendship distane� for all distanes up to 5. Then we an selet just those pairs that appear at distane 5

but never appear at a lesser distane.

CREATE TABLE friends5 AS

WITH distanes(p1, p2, dist) AS (

SELECT ___ from friends UNION

SELECT __

FROM distanes AS d, friends AS f

WHERE ___

)

SELECT _________________________ FROM ___

GROUP BY __________________________________, ______________________________________

HAVING __;

