
Physics 7B Lecture 1 Midterm 1 - Fall 2019 Solutions

Problem #1

A.

3 points: finding the new value of r3 from the volumetric expansion coefficient

V ′inner sphere =
4

3
π(r′)3 = (1 + β∆T )

4

3
πr3 (1)

(r′)3 = (1 + β∆T )r3 (2)

2 points: solve for r’

r′ = (1 + β∆T )1/3r (3)

1 point: approximate r’ from Taylor series

r′ ≈ (1 +
β

3
∆T )r (4)

B.

2 points: statements of ideal gas law

PV0 = nRgasTi P ′Vf = nRgasTf (5)

2 points: solving for final pressure

P ′ = P
V0
Vf

Tf
Ti

(6)

2 points: solving for V0 and Vf

V0 =
4

3
π(R3 − r3) Vf =

4

3
π(R3 − (r′)3) =

4

3
π(R3 − r3(1 + β∆T ) (7)

2 points: final answer

P ′ = P
R3 − r3

R3 − r3(1 + β∆T )

Tf
Ti

(8)

C.

1 point: getting rms velocity

KEtrans =
3

2
kbT =

1

2
mv2 (9)



vrms =

√
3kbTf
m

(10)

2 points: getting the rms velocity for motion in the radial direction

KEradial =
1

2
kbT =

1

2
mv2radial (11)

vradial, rms =

√
kbT

m
(12)

3 points: getting the average time

t =
l

vradial
(13)

l = the radial distance covered between collisions = 2(R− r′) = 2(R− r(1 + (β/3)∆T ))

vradial ≈ vradial, rms (14)

t =
2(R− r(1 + (β/3)∆T ))√

(kbT )/m
(15)



Problem #2

(a) (6 pts.) How much time is there between collisions of a particle on a given wall? Because

the gas is isotropic and the side lengths of our container are all equal, the answer will be the

same for each wall. Let’s consider a wall parallel to the y axis. The distance the particle must

travel along the x direction to reach the opposite wall is L, the side length. We are interested

in the time between successive collisions with the same wall, so we need the distance for our

particle to travel to the opposite wall and back, which is 2L.

To find the time needed for the particle to traverse this distance, we consider only the

velocity in the x direction, vx, because we have only found the distance traveled in the x

direction. Finally we can recall from the definiton of speed/velocity: v = d/t

∆t =
d

v
=

2L

|vx|

Rubric: 2 pts. for correctly identifying the distance traveled as 2L.

2 pts. for correctly identifying the speed as vx or vy.

2 pts. for correctly applying the formula for ∆t in terms of the definition of velocity.

(b) (6 pts.) Find an expression for the force F exerted on a given wall by the collision of

gas particles. Our starting point is the definition of force:

~F =
d~p

dt

During a collision, the velocity of a given particle goes from ~v = vxx̂ + vyŷ to ~v′ =

−vxx̂ + vyŷ, so the momentum change is |∆~p| = |m∆~v| = 2m|vx|. The average force ~F1

from a single gas particle is equal to the momentum change from one collision divided by the

average time between two collisions.

|~F1| =
|δ~p|
δt

=
mv2x
L



The average force on a wall from collisions of gas particles is equal to the number of

particles N times the average value of the average force from one particle:

F̄ = NF̄1 =
Nmv̄2x
L

If we want, we can write this in terms of the rms speed v2 = v2x + v2y = 2v2

F̄ = NF̄1 =
Nmv̄2

2L

Rubric: 2 pts. for correctly finding the momentum change from a single collision.

2 pts. for correctly identifying the relationship between force and momentum.

2 pts. for correctly using the result of part (a) and finding the average force from all of the

particles.

(c) (8 pts.) Using the equipartition theorem, derive the equation of state of the gas that

relates the temperature T , the volume V (correction to area A), and the force F .

For this problem, we are specifically asked to use the equipartition theorem, and cannot

apply the ideal gas law, which is specific to 3 dimensions. Our goal is to prove the statement

of the ideal gas law in 2D. The equipartition theorem tells us that each accessible quadratic

independent degree of freedom in the internal energy of our system has average energy 1
2
kBT .

The kinetic energy in the x direction is one such degree of freedom, so we have the following

equation for the average x kinetic energy of a single particle:

1

2
kBT =

1

2
mv2x =

1

2
mv̄2x

or

kBT =
1

2
mv2rms

The result of part (b) says that mv̄x
2 = FL

N
, so we can replace the rms speed to get our

equation of state



kBT =
FL

N

We can simplify this and write in terms of the given variables

F
√
A = NkBT

Rubric: 3 pts. for a correct application of the equipartition theorem.

3 pts. for eliminating the mass and rms velocity to attain an equation of state.

2 pts. for writing the equation of state in terms of the variables asked for.



Problem #3

(a)

Using the ideal gas law:

PV = nRT

We can write:

P0V = (1 + 5)RTi

=⇒ V =
6RTi
P0

Rubric for (a)

� +1pt: Using the ideal gas law

� +1pt: Using n = 1 + 5 = 6

� +1pt: Correct final expression

(b)

Using the ideal gas law again, realizing that the volume doesn’t change in any of the processes

(we simply have a solid container - there is no mention of the gas being able to do any work

on a piston or anything like that) and that n = 3 + 4 = 7 after combustion, we can write:

PfV = (3 + 4)RTf

=⇒ Pf =
7RTf
V

=
7RTf
6RTi
P0

=⇒ Pf =
7TfP0

6Ti



Rubric for (b)

� +1pt: Using the ideal gas law

� +1pt: Realizing that the volume does not change from (a)

� +1pt: Using n = 7 at the end of combustion

� +1pt: Correct final expression

(c)

Using the expression for Pf from (b) and the fact that we are given that Tf = Ti we can

write:

Pf =
7TfP0

6Ti
=

7TfP0

6Tf

=⇒ Pf =
7P0

6

Rubric for (c)

� +1pt: Using the ideal gas law in some way

� +2pt: Plugging in Ti for Tf and simplifying the expression

� +1pt: Correct final expression

(d)

We are given that every species has 5 degrees of freedom in each step. Recall that:

Eint =
d

2
NkBT =

d

2
nRT



where d is the number of degrees of freedom. Since both n and T are changing from just

before to just after the combustion in the problem (we are not considering the cooling process

in this part), we look at the initial and final values of Eint:

Eintinitial
=

5

2
(6)RTi

Eintfinal
=

5

2
(7)RTf

Then we can look at the change in internal energy of the system (∆Eint) when undergoing

the combustion:

∆Eint = Eintfinal
− Eintinitial

=
5

2
(7)RTf −

5

2
(6)RTi

=⇒ ∆Eint =
5

2
R(7Tf − 6Ti)

Rubric for (d)

� +1pt: Realizing that the coefficient in the expression for internal energy is 5
2

� +1pt: Realizing that NkB = nR and using nR in the expression for internal energy

� +1pt: Showing or using ∆E = Eintfinal
− Eintinitial

, not just ∆E = 5
2
nR∆T , which is

only true if n is constant

� +1pt: Correct final expression

(e)

Since the volume doesn’t change for any of the processes, no work is done. Then, by the first

law of thermodynamics:

Eint = Q−W = Q



In this part, we are only looking at the cooling process, so n is now constant (specifically

n = 7), and we can use a similar procedure as in part (d) to find the change in internal

energy (and therefore the heat that leaves the container):

Eintinitial
=

5

2
(7)RTf

Eintfinal
=

5

2
(7)RTi

=⇒ ∆Eint = Eintfinal
− Eintinitial

=
5

2
(7)RTi −

5

2
(7)RTf

=⇒ Q =
35

2
R(Ti − Tf )

=⇒ −Q =
35

2
R(Tf − Ti)

Where −Q is the heat that leaves the container. Adding up the values in (d) and (e), we

see that the internal energy increases overall because, even though we have reached the same

temperature as the initial temperature, the number of moles has increased.

Rubric for (e)

� +1pt: Showing or clearly working with the fact that Q = ∆Eint

� +1pt: Working on (only) the cooling process and not the earlier combustion process

� +2pt: Mentioning that the reason the answers in parts (d) and (e) don’t correspond is

that the number of moles (or number of molecules) change in the combustion process but

don’t change in the cooling process for the same change in temperature, and therefore

the magnitudes of the two answers are different

� +1pt: Correct final expression



Problem #4

(a) [8pt] See below for an acceptable example. It’s important to draw the line shape correctly

(e.g. distinct from isovolumetric/isobaric), and the direction of the cycle should be right

(engine instead of a fridge). You should also include sufficient descriptions to show which

process is isothermal or adiabatic (to convince others that it’s not a random drawing).

(b) [17pt] There are two possible ways to solve the problem: expression QH and QL with

either work or entropy.

Solution 1 According to first law: W = QH −QL. Using ∆E = 0 in isothermal process,

we have QH = WH , −QL = WL. so [3pt]

e = W/QH = 1−QL/QH = 1 +WL/WH (16)

AB is isothermal process, so [3pt]

WH =

∫ B

A

p(V )dV =

∫ B

A

nRTH
V

dV = nRTH ln
VB
VA

(17)

Similarly for CD: [3pt]

WL = nRTL ln
VD
VC

(18)

Meanwhile, since BC is adiabatic process: [2pt]

pBV
γ
B = pCV

γ
C (γ =

cp
cv
> 1) (19)

And the same holds for DA: [2pt]

pAV
γ
A = pDV

γ
D (20)



Using the fact from isothermal process: pAVA = pBVB, pCVC = pDVD, we have [2pt]

pBV
γ
B · pAVA

pAV
γ
A · pBVB

=
pCV

γ
C · pDVD

pDV
γ
D · pCVC

=⇒
(
VB
VA

)γ−1
=

(
VC
VD

)γ−1
(21)

In the end we obtain that

VB
VA

=
VC
VD

=⇒ ln
VB
VA

= − ln
VD
VC

= C (22)

Therefore: [2pt]

e = 1 +
WL

WH

= 1 +
−nRTLC
nRTHC

= 1− TL
TH

(23)

Solution 2 According to first law: W = QH −QL, so

e = W/QH = 1−QL/QH (24)

and we can use entropy change ∆S to represent QL and QH . [3pt]

AB is isothermal process: [3pt]

∆SAB =

∫ B

A

dQ/TH = QH/TH (25)

Similarly for CD: [3pt]

∆SCD = −QL/TL (26)

BC and AD are adiabatic process: [2pt]

∆SBC = ∆SDA = 0 (27)

The system return to its original state after a cycle: [3pt]

∆SABCDA = 0 (28)

Input the ∆S values, we end up with [1pt]

QH/TH −QL/TL = 0 =⇒ QL/QH = TL/TH (29)

Therefore: [2pt]

e = 1− QL

QH

= 1− TL
TH

(30)



Problem #5

Correct entropy change – 12.5 points

The overall entropy change is ∆S = ∆SCs + ∆Sroom, where the former can be further

broken up into Swarming and Smelt. Correctly adding all of these 11m
3

J/K. Hence, getting all

the components right but getting this final answer wrong (either due to an arithmetic

mistake or needlessly rounding within the problem) can be regarded as equivalent to getting

this “almost correct”, corresponding to the 0.5 point deduction.

Correct entropy change from warming up – 4 points

This is the entropy change due to the cesium warming up after melting, and should result

as 12m J/K.

Correct setup – 3 points

We have that S. =
Q.
T

, while the heat required to warm up a material is given by Q. = mcT. ,

so:

∆S = mc

∫ Tf

T0

T.
T

= mc ln

(
Tf
T0

)
(31)

Where we would use that the temperatures are given in Kelvins (i.e. 300 K and 320 K for T0

and Tf respectively), and c = 200 J/kg ·K as given in the problem, to get the correct answer.

Note that substituting in numerical values to begin with and not explicitly having the

symbolic expression is fine – correct form but incorrect numerical values would then garner

these points but none further.

Almost correct entropy change from warming up – 3.5 points

This is given in the case of some algebraic error, or mistake in converting symbols to

numbers. It is not given in the case that the answer was kept as a purely symbolic

expression (as numerics are necessary for comparison) or in the case of a more fundamental



mistake between the setup and final answer, i.e. not converting Celcius to Kelvins. All

subsequent “almost correct” items are similar, so I will not repeat this explanation.

Correct entropy change from melting – 4 points

This should come out to 200m
3

J/K.

0.0.1 Correct setup – 3 points

This part is quite simple: as temperature is constant, ∆S = Q
T

, where Q = mL, where

L = 20000 J/kg as given in the problem, and T = T0 = 300 K.

Almost correct entropy change from melting – 3.5 points

Correct entropy change for room – 4 points

This should come out to −75m J/K, where mistaking just the sign would lead to being

marked as having “correct setup”.

Correct setup – 3 points

For here, we note that (due to the implicit assumption that the room with cube is an

isolated system) energy conservation guarantees us that Qroom = −Qcube. Meanwhile, the

room stays at a constant temperature equal to Tf . Hence the expression here is:

∆S = −
m
(
L+ c

(
Tf − T0

))
Tf

(32)

Almost correct entropy change for room – 3.5 points

Process will occur naturally – 0.5 points

Self-explanatory: the process will indeed occur naturally.



Correct reasoning why – 2 points

Since ∆S > 0 for the overall system, this is a process that could occur naturally (i.e. second

law of thermodynamics). Alternatively (again due to the second law), one could say that

heat naturally flows from the hot room to the cold cesium until the two reach the same

temperature. Points will be awarded as long as reasoning is correct here, even if answer is

wrong (ex. due to wrong entropy calculation).



Bonus

In 3 dimensions, the Maxwell distribution is

f(v) = 4πN

(
m

2πkBT

)3/2

v2 exp

(
− mv2

2kBT

)
What would the Maxwell distribution look like if there were 5 dimensions instead of 3?

Explain any changes that you made from the 3D version of the Maxwell distribution.

If you have some knowledge of statistical mechanics, it is possible to simply perform a cal-

culation and derive an expression for the Maxwell distribution in d dimensions. Alternatively,

you may remember Professor Birgeneau discussing it in lecture. Here we’ll use heuristic ar-

guments to determine how each term should change. First let’s analyze the exponent, which

is simply the kinetic energy divided by kBT . The formula for kinetic energy will be the same

in 5D, though we’ll have v2 = v21 + v22 + v23 + v24 + v25 now. This part of the formula comes

from the Boltzmann distribution and will be unchanged.

Now consider the v2 term. We know that velocities in 1 dimension follow a normal

distribution. In higher dimensions, we add a factor to account for the size of phase space.

There are more ways to have a speed of v2 than v1 for v2 > v1 because the sphere in velocity

space defined by ~v2 = v22 is bigger. Heuristically and in the formal derivation, the v2 factor

comes from the surface area of a ball in d dimensions, which scales as vd−1. Therefore we

change v2 → v4.

Finally we have to consider the normalization constant. We can calculate this explicitly

even without doing the derivation by setting

∫ ∞
0

dvf(v) = 1

We can guess what happens to the dimensionful constants without going through this

process just with dimensional analysis, however. The units of f are inverse speed, as are the

units of
√

m
kBT

. Therefore we need to add two more factors of
√

m
kBT

in order to cancel out

the added v2. It’s hard to guess the numerical prefactor, but it’s natural to change the 3/2

to a 5/2 without touching anything else. Our guess is then



f(v) = 4πN

(
m

2πkBT

)5/2

v4 exp

(
− mv2

2kBT

)
The actual answer with full normalization is

f(v) =
8π2

3
N

(
m

2πkBT

)5/2

v4 exp

(
− mv2

2kBT

)
where 8π2

3
is related to the surface area of a ball in 5 dimensions.

Rubric: 5pts. for correctly changing the exponents of v and not m/kBT while not changing

the argument of the exponential. Must be accompanied by some justification.


