
CS 188
Fall 2019

Introduction to
Artificial Intelligence Midterm

• You have approximately 110 minutes.

• The exam is closed book, closed calculator, and closed notes except your one-page crib sheet.

• Mark your answers ON THE EXAM ITSELF. Provide a brief explanation if applicable.

• For multiple choice questions,
– □ means mark all options that apply
– # means mark a single choice
– When selecting an answer, please fill in the bubble or square completely ( and■)
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□ Alan
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□ Sherman*

□ Mike

□ Danny*

□ Jinkyu

□ Lawrence

□ Albert

For staff use only:
Q1. Potpourri /9
Q2. CSP: The Picnic /17
Q3. MDP: Blackjack /12
Q4. RL: Blackjack, Redux /17
Q5. Games /15
Q6. Search: Snail search for love /14
Q7. Searching with Heuristics /16

Total /100
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Q1. [9 pts] Potpourri
(a) [3 pts] We are given the following game tree.

(i) [1 pt]What is the total number of terminal nodes (denoted by squares at bottom)? Your answer should be an integer.

Answer:

(ii) [2 pts] Suppose you use alpha–beta pruning to prune branches from game tree. What is themaximum total number
of terminal nodes whose value is never explored because an immediate or upstream branch is pruned in one
single set of assignments for the terminal nodes. Your answer should be an integer.

Answer:

(b) [2 pts] Arc consistency
X ⟶ Y is consistent if and only if (i) , (ii)
(i) [1 pt]
# for some value of x in X
# for all values of x in X
# for some value of y in Y
# for all values of y in Y

(ii) [1 pt]
# there exists some allowed x in X
# all values of x in X are allowed
# there exists some allowed y in Y
# all values of y in Y are allowed

(c) [4 pts] Which of the following algorithms is always guaranteed to provide the optimal solution for the corresponding
problems they solve? We define "corresponding problem" as one of the following: uninformed/informed search, CSPs,
MDPs, game trees, reinforcement learning.

□ DFS □ Policy extracted from policy iteration
□ Greedy search □ Policy extracted from value iteration
□ Hill climbing □ Minimax search with �–� pruning (assuming both players are playing optimally)
□ Simulated annealing
# None of the above
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Q2. [17 pts] CSP: The Picnic
Six CS 188 TAs secretly scheduled a Picnic behind the back of other TAs! In order for the Picnic to be successful, Andy (A),
Cathy (Ca), Chandan (Ch), Lindsay (L), Mesut (Me), and Mike (Mi) will each be assigned 1 of the 5 tasks. Please note that one
task requires 2 TAs. In this question, the TAs are the variables, and the domains are the tasks {1,… , 5}. Your mission is to use
your knowledge of CSPs to find an assignment that meets the following constraints:

• Only Andy (A) is capable of task 4.

• Cathy (Ca) and Mesut (Me) must be assigned adjacent (difference in number is 1) tasks. (e.g. task 4 and task 5 are
adjacent, but task 1 and task 5 are not)

• Chandan (Ch) can only do odd-numbered tasks.

• Lindsay (L) can only do tasks with number ≤ 2.

• Mesut (Me) can only do either task 2 or task 5.

• Mike (Mi) has to take a task with a bigger number than Lindsay (L)’s.

• Task 2 needs exactly 2 TAs.

• Every task other than task 2 needs exactly 1 TA.

• The 2 TAs doing task 2 needs to have the same initial letter.

(a) [8 pts] Let’s start with looking into the constraints
(i) [1 pt] What type of constraint is Mike (Mi) has to take a task with a bigger number than Lindsay (L)’s?
# Unary Constraint # Binary Constraint # Higher Order Constraint

(ii) [1 pt] What type of constraint is Only Andy (A) is capable of task 4?
# Unary Constraint # Binary Constraint # Higher Order Constraint

(iii) [1 pt] What type of constraint is Task 2 needs exactly 2 TAs?
# Unary Constraint # Binary Constraint # Higher Order Constraint

(iv) [3 pts] Please select the elements in the domains that will be crossed out after enforcing unary constraints.

A □ 1 □ 2 □ 3 □ 4 □ 5
Ca □ 1 □ 2 □ 3 □ 4 □ 5
Ch □ 1 □ 2 □ 3 □ 4 □ 5
L □ 1 □ 2 □ 3 □ 4 □ 5
Me □ 1 □ 2 □ 3 □ 4 □ 5
Mi □ 1 □ 2 □ 3 □ 4 □ 5

(v) [2 pts] Please select the elements in the domains that will be crossed out after enforcing unary constraints and binary
constraints through arc-consistency. Ignore high order constraints. (Note: this part will be graded independently,
which means no partial credit if your answer is incorrect due to errors in previous parts. So please double check the
correctness of previous parts.)

A □ 1 □ 2 □ 3 □ 4 □ 5
Ca □ 1 □ 2 □ 3 □ 4 □ 5
Ch □ 1 □ 2 □ 3 □ 4 □ 5
L □ 1 □ 2 □ 3 □ 4 □ 5
Me □ 1 □ 2 □ 3 □ 4 □ 5
Mi □ 1 □ 2 □ 3 □ 4 □ 5
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(b) [2 pts] Heuristics in CSPs could help you find a satisfying assignment more quickly. Which of the heuristics fits each of
the given descriptions?
(i) [1 pt] Prioritize assigning a variable that has the minimum number of remaining values in its domain
# MRV # LCV # Both # Neither

(ii) [1 pt] Prioritize assigning a variable that is involved in the least number of constraints
# MRV # LCV # Both # Neither

(c) [2 pts] Suppose you can’t use either of those helpful heuristics because you ran out of time implementing them [sad reacts
only :( ] and decide to run the backtracking search algorithm manually. Fortunately, Mike told you an extra constraint: he
(Mi) has to be assigned to task 2 at the picnic.
(i) [1 pt] Using this additional information, could you find at least one assignment that satisfies all the constraints?
# Yes # No

(ii) [1 pt] If yes, which task(s) can Cathy possibly get assigned to?
□ 1 □ 2 □ 3 □ 4 □ 5 # Not applicable

(d) [5 pts] Now suppose allN CS 188 students and staff are going on the trip together. There are D tasks that need exactly 2
people, while all other tasks need exactly 1 person. In addition, there are b > 0 binary constraints, and ℎ > 0 higher-order
constraints. There exists a satisfying assignment where everyone gets one and only one task, and all tasks are filled to the
required number.
(i) [1 pt] Without further assumptions, which of the following is the tightest upper bound for the runtime for finding a

satisfying assignment?
# O(DN ) # O(ND) # O((N −D)N ) # O(N (N−D)) # O(ND2)
# O(N(N −D)2) # O(N2D) # O(N2(N −D)) # O(N2D3) # O(N2(N −D)3)

(ii) [2 pts] We remove all the higher-order constraints. Without further assumptions, which of the following is the
tightest upper bound for the runtime for the AC-3 Algorithm in this setting?
# O(DN ) # O(ND) # O((N −D)N ) # O(N (N−D)) # O(ND2)
# O(N(N −D)2) # O(N2D) # O(N2(N −D)) # O(N2D3) # O(N2(N −D)3)

(iii) [2 pts] Suppose the binary constraints turn out to be very sparse (b << N2). After removing all the higher-order
constraints, without further assumptions, which of the following is the tightest upper bound for the runtime for the
AC-3 Algorithm in this setting now?
# O(D

√

b) # O(
√

b
D
) # O((N −D)

√

b) # O(
√

b
(N−D)

) # O(
√

bD2)
# O(

√

b(N −D)2) # O(bD) # O(b(N −D)) # O(bD3) # O(b(N −D)3)
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Q3. [12 pts] MDP: Blackjack
There’s a new gambling game popping up in Vegas! It’s similar to blackjack, but it’s played with a single die. CS188 staff is
interested in winning a small fortune, so we’ve hired you to take a look at the game!

We will treat the game as an MDP. The game has states 0,1,. . . ,8, corresponding to dollar amounts, and a Done state where the
game ends. The player starts with $2, i.e. at state 2. The player has two actions: Stop and Roll, and is forced to take the Stop
action at states 0,1,and 8.

When the player takes the Stop action, they transition to theDone state and receive reward equal to the amount of dollars of the
state they transitioned from: e.g. taking the stop action at state 3 gives the player $3. The game ends when the player transitions
to Done.

The Roll action is available from states 2-7. The player rolls a biased 6-sided die that will land on 1, 2, 3, or 4with 1
8 probability

each and 5 or 6 with probability 1
4 each.

If the player Rolls from state s and the die lands on outcome o, the player transitions to state s + o − 2, as long as s + o − 2 ≤ 8
(s is the amount of dollars of the current state, o is the amount rolled, and the negative 2 is the price to roll). If s + o − 2 > 8,
the player busts, i.e. transitions to Done and does NOT receive reward.

(a) [4 pts] In solving this problem, you consider using policy iteration. Your initial policy �a is in the table below. Evaluate
the policy at each state, with  = 1. Note that the action at state 0, 1, 8 is fixed into the rule, so we will not consider those
states in the update. (Hint: how does the bias in the die affect this?)

State 2 3 4 5 6 7

�a(s) Roll Roll Stop Stop Stop Stop

V �a(s)

(b) [4 pts] Deciding against the previous policy, you come up with a simpler policy �(0), as shown below, to start with.
Perform one iteration of Policy Iteration (i.e. policy evaluation followed by policy improvement) to find the new policy
�(1). In this part as well, we have  = 1.
In the table below, R stands for Roll and S stands for Stop. Select both R and S if both actions are equally preferred.

State 2 3 4 5 6 7

�(0)(s) Stop Stop Stop Stop Stop Stop

�(1)(s) □ R □ S □ R □ S □ R □ S □ R □ S □ R □ S □ R □ S

(c) [2 pts] Suppose you start with a initial policy �0 that is the opposite of the optimal policy (which means if �∗(s) =
Roll, �0(s) = Stop, and vice versa). Your friend Alice claims that the Policy Iteration Algorithm can still find the optimal
policy in this specific scenario. Is Alice right?
# Alice is right, because Policy Iteration can find the optimal policy regardless of initial policy.
# Alice is right, but not for the reason above.
# Alice is wrong, because a very bad initial policy can block the algorithm from exploring the optimal actions.
# Alice is wrong, but not for the reason above.
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(d) [2 pts] Suppose you want to try a different approach, and implement a value iteration program to find the optimal policy
for this new game. Your friend Bob claims that Vk(s) has to converge to V ∗(s) for all states before the program declares
it has found the optimal policy. Is Bob right?
# Bob is right, because Vk(s) always converge to V ∗(s) for all states when the optimal policy �∗ is found.
# Bob is right, but not for the reason above.
# Bob is wrong, because we cannot use value iteration to find the optimal policy.
# Bob is wrong, but not for the reason above
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Q4. [17 pts] RL: Blackjack, Redux
After playing the Blackjack game in Q3 a few times with the optimal policy you found in the previous problem, you find that
you’re doing worse than expected! (Hint: you may want to do Q3 before attempting this problem.) In fact, you are beginning
to suspect that the Casino was not honest about the probabilities of dice’s outcome. Seeing no better option, you decided to do
some good old fashioned reinforcement learning (RL).

(a) First, you need to decide what RL algorithm to use.
(i) [2 pts] Suppose you had a policy � and wanted to find the value V � of each of the states under this policy. Which

algorithms are appropriate for performing this calculation? Note that we do not know the transition probabilities,
and we don’t have sufficient samples to approximate them.
□ Value Iteration □ Policy Iteration □ Q-learning □ Direct Evaluation □ Temporal difference learning

(ii) [2 pts] Being prudent with your money, you decide to begin with observing what happens when other people ran-
domly play the blackjack game. Which of the following algorithms can recover the optimal policy given this play
data?
□ Value Iteration □ Policy Iteration □ Q-learning □ Direct Evaluation □ Temporal difference learning

(b) You decide to use Q-learning to play this game.
(i) [2 pts] Suppose your initial policy is �0. Which of the following is the update performed by Q-learning with learning

rate �, upon getting reward R(s, a, s′) and transitioning to state s′ after taking action a in state s?
# Qk+1(s, a) = (1 − �)Qk(s, a) + �(R(s, a, s′) +  maxa′ Qk(s′, a′))
# Qk+1(s, a) = (1 − �)Qk(s, a) + �(R(s, a, s′) + Qk(s′, �0(s′))
# Vk+1(s) = (1 − �)Vk(s) + �(R(s, a, s′) +  maxs′′ Vk(s′′))
# Vk+1 = (1 − �)Vk + �(R(s, a, s′) + Vk(s′))

(ii) [2 pts] As with the previous problem, denote a policy at any time-step k as �k (and �k(a|s) means the probability
of taking action a at state), and the Q values at that timestep as Qk. In the limit of infinite episodes, which of these
policies will always do each action in each state an infinite amount of times?
□ �k(Roll|s) = �k(Stop|s) =

1
2

□ �k(a|s) = 1 − �
2 if a == argmaxaQk(s, a) else

�
2

□ �k(Roll|s) = 1, �k(Stop|s) = 0
□ �k(Roll|s) =

1
3 , �k(Stop|s) =

2
3

# None of the above

(iii) [3 pts] Suppose you decide to use an exploration function f (s′, a′), used in-place of Q(s′, a′) in the Q-learning
update. Which of the following choices of an exploration functions encourage you to take actions you haven’t taken
much before? (Recall that N(s, a) is the number of times the q-state (s, a) has been visited, assuming every (s, a)
has been visited at least once.)
□ f (s, a) = Q(s, a)
□ f (s, a) = Q(s, a) +N(s, a)
□ f (s, a) = maxa′ Q(s, a′)
□ f (s, a) = Q(s, a) + k

N(s,a) , where k > 0

□ f (s, a) = Q(s, a) +
√

log(
∑

a′ N(s,a′))
N(s,a)

□ f (s, a) = 1
N(s,a)2

# None of the above
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(iv) [3 pts] Suppose you start with the following Q-value table:
State 2 3 4 5 6 7
Q(State, Roll) 0 0 5 3 4 2
Q(State, Stop) 2 3 4 5 6 7

After you observe the trajectory

(s = 2, a = Roll, s′ = 4, r = 0), (s = 4, a = Roll, s′ = 7, r = 0), (s = 7, a = Stop, s′ = Done, r = 7)

What are the resulting Q-values after running one pass of Q-learning over the given trajectory? Suppose discount
rate  = 1, and learning rate � = 0.5.

State 2 3 4 5 6 7

Q(State, Roll)

Q(State, Stop)

(v) [1 pt] One of the other gamblers looks over your shoulder as you perform Q-learning, and tells you that you’re
learning too slowly. "You should use a learning rate of � = 1", they suggest.
If you use constant � = 1, is Q-learning guaranteed to eventually converge to the optimal policy, assuming you
observe every state, action pair an infinite amount of times? # Yes # No

(vi) [2 pts] If you continue with constant � = 0.5, is Q-learning guaranteed to eventually converge to the optimal policy,
assuming you observe every state, action pair an infinite amount of times? # Yes # No
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Q5. [15 pts] Games
Alice is playing a two-player game with Bob, in which they move alternately. Alice is a maximizer. Although Bob is also
a maximizer, Alice believes Bob is a minimizer with probability 0.5, and a maximizer with probability 0.5. Bob is aware of
Alice’s assumption.
In the game tree below, square nodes are the outcomes, triangular nodes are Alice’s moves, and round nodes are Bob’s moves.
Each node for Alice/Bob contains a tuple, the left value being Alice’s expectation of the outcome, and the right value being
Bob’s expectation of the outcome.
Tie-breaking: choose the left branch.

(a) [2 pts] In the blanks below, fill in the tuple values for tuples (Ba, Bb) and (Ea, Eb) from the above game tree.

(Ba, Bb) = ( , )

(Ea, Eb) = ( , )

(b) [2 pts] In this part, we will determine the values for tuple (Da, Db).
(i) [1 pt] Da = # 8 # X # 8+X # 4+0.5X # min(8,X) # max(8,X)

(ii) [1 pt] Db = # 8 # X # 8+X # 4+0.5X # min(8,X) # max(8,X)

10



SID:

(The graph of the tree is copied for your convenience. You may do problem e on this graph. )

(c) [6 pts] Fill in the values for tuple (Ca, Cb) below. For the bounds of X, you may write scalars, ∞ or −∞.
If your answer contains a fraction, please write down the corresponding simplified decimal value in its place. (i.e., 4
instead of 8

2 , and 0.5 instead of
1
2 ).

1. If −∞ < X < , (Ca, Cb) = ( , )

2. Else, (Ca, Cb) = ( , max( , ) )

(d) [4 pts] Fill in the values for tuple (Aa, Ab) below. For the bounds of X, you may write scalars, ∞ or −∞.
If your answer contains a fraction, please write down the corresponding simplified decimal value in its place. (i.e., 4
instead of 8

2 , and 0.5 instead of
1
2 ).

1. If −∞ < X < , (Aa, Ab) = ( , )

2. Else, (Aa, Ab) = ( , max( , ) )

(e) [1 pt] When Alice computes the left values in the tree, some branches can be pruned and do not need to be explored. In
the game tree graph on this page, put an ’X’ on these branches. If no branches can be pruned, mark the "Not possible"
choice below.
Assume that the children of a node are visited in left-to-right order and that you should not prune on equality.

# Not possible
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Q6. [14 pts] Search: Snail search for love
Scorpblorg the snail is looking for a mate. It can visit different potential mates based on a trail of ooze to nearby snails, and then
test them for chemistry, as represented in the below graph, where each node represents a snail. In all cases, nodes with equal
priority should be visited in alphabetical order.

Start
Alex

Bubbles

Cuddles

Dakota

Squish

(a) [5 pts] Simple search
In this part, assume that the only match for Scorpblorg is Squish (i.e. Squish is the goal state). Which of the following
are true when searching the above graph?
(i) [1 pt] BFS Tree Search expands more nodes than DFS Tree Search # True # False
(ii) [1 pt] DFS Tree Search finds a path to the goal for this graph # True # False
(iii) [1 pt] DFS Graph Search finds the shortest path to the goal for this graph # True # False
(iv) [2 pts] If we remove the connection from Cuddles → Alex, can DFS Graph Search find a path to the goal for the

altered graph? # Yes # No

(b) [5 pts] Third Time’s A Charm
Now we assume that Scorpblorg’s mate preferences have changed. The new criteria she is looking for in a mate is that
she has visited the mate twice before (i.e. when she visits any state for the third time, she has found a path to the goal).
(i) [3 pts] What should the most simple yet sufficient new state space representation include?

□ The current location of Scorpblorg
□ The total number of edges travelled so far
□ An array of booleans indicating whether each snail has been visited so far
□ An array of numbers indicating how many times each snail has been visited so far
□ The number of distinct snails visited so far
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Start
Alex

Bubbles

Cuddles

Dakota

Squish

(The graph is copied for your convenience)
(ii) [1 pt] DFS Tree Search finds a path to the goal for this graph # True # False
(iii) [1 pt] BFS Graph Search finds a path to the goal for this graph # True # False
(iv) [2 pts] If we remove the connection from Cuddles → Alex, can DFS Graph Search finds a path to the goal for the

altered graph? # Yes # No

We continue as in part (b) where the goal is still to find a mate who is visited for the third time.

(c) [4 pts] Costs for visiting snails
Assume we are using Uniform cost search and we can now add costs to the actions in the graph.
(i) [2 pts] Can one assign (non-negative) costs to the actions in the graph such that the goal state returned by UCS

(Tree-search) changes? # Yes # No
(ii) [2 pts] Can one assign (potentially negative) costs to the actions in the graph such that UCS (Tree-search) will never

find a goal state? # Yes # No
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Q7. [16 pts] Searching with Heuristics
Consider the A* searching process on the connected undirected graph, with starting node S and the goal node G. Suppose the
cost for each connection edge is always positive. We define ℎ∗(X) as the shortest (optimal) distance to G from a node X.

Answer Questions (a), (b) and (c). You may want to solve Questions (a) and (b) at the same time.

(a) [6 pts] Suppose ℎ is an admissible heuristic, and we conduct A* tree search using heuristic ℎ′ and finally find a solution.
Let C be the cost of the found path (directed by ℎ′, defined in part (a)) from S to G
(i) [4 pts] Choose one best answer for each condition below.

1. If ℎ′(X) = 1
2ℎ(X) for all Node X, then # C = ℎ∗(S) # C > ℎ∗(S) # C ≥ ℎ∗(S)

2. If ℎ′(X) = ℎ(X)+ℎ∗(X)
2 for all Node X, then # C = ℎ∗(S) # C > ℎ∗(S) # C ≥ ℎ∗(S)

3. If ℎ′(X) = ℎ(X) + ℎ∗(X) for all Node X, then # C = ℎ∗(S) # C > ℎ∗(S) # C ≥ ℎ∗(S)
4. If we define the setK(X) for a nodeX as all its neighbor nodes Y satisfying ℎ∗(X) > ℎ∗(Y ), and the following

always holds

ℎ′(X) ≤
{

minY∈K(X) ℎ′(Y ) − ℎ(Y ) + ℎ(X) if K(X) ≠ ∅
ℎ(X) if K(X) = ∅

then, # C = ℎ∗(S) # C > ℎ∗(S) # C ≥ ℎ∗(S)
5. If K is the same as above, we have

ℎ′(X) =
{

minY∈K(X) ℎ(Y ) + cost(X, Y ) if K(X) ≠ ∅
ℎ(X) if K(X) = ∅

where cost(X, Y ) is the cost of the edge connecting X and Y ,
then, # C = ℎ∗(S) # C > ℎ∗(S) # C ≥ ℎ∗(S)

6. If ℎ′(X) = minY∈K(X)+{X} ℎ(Y ) (K is the same as above), # C = ℎ∗(S) # C > ℎ∗(S) # C ≥ ℎ∗(S)
(ii) [2 pts] In which of the conditions above, ℎ′ is still admissible and for sure to dominate ℎ? Check all that apply.

Remember we say ℎ1 dominates ℎ2 when ℎ1(X) ≥ ℎ2(X) holds for all X. □ 1 □ 2 □ 3 □ 4 □ 5 □ 6

(b) [7 pts] Suppose ℎ is a consistent heuristic, and we conduct A* graph search using heuristic ℎ′ and finally find a solution.
(i) [5 pts] Answer exactly the same questions for each conditions in Question (a)(i).

1. # C = ℎ∗(S) # C > ℎ∗(S) # C ≥ ℎ∗(S) 2. # C = ℎ∗(S) # C > ℎ∗(S) # C ≥ ℎ∗(S)
3. # C = ℎ∗(S) # C > ℎ∗(S) # C ≥ ℎ∗(S) 4. # C = ℎ∗(S) # C > ℎ∗(S) # C ≥ ℎ∗(S)
5. # C = ℎ∗(S) # C > ℎ∗(S) # C ≥ ℎ∗(S) 6. # C = ℎ∗(S) # C > ℎ∗(S) # C ≥ ℎ∗(S)

(ii) [2 pts] In which of the conditions above, ℎ′ is still consistent and for sure to dominate ℎ? Check all that apply.
□ 1 □ 2 □ 3 □ 4 □ 5 □ 6
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(c) [3 pts] Suppose ℎ is an admissible heuristic, and we conduct A* tree search using heuristic ℎ′ and finally find a solution.
If � > 0, and X0 is a node in the graph, and ℎ′ is a heuristic such that

ℎ′(X) =
{

ℎ(X) if X = X0
ℎ(X) + � otherwise

• Alice claims ℎ′ can be inadmissible, and hence C = ℎ∗(S) does not always hold.
• Bob instead thinks the node expansion order directed by ℎ′ is the same as the heuristic ℎ′′, where

ℎ′′(X) =
{

ℎ(X) − � if X = X0
ℎ(X) if otherwise

Since ℎ′′ is admissible and will lead to C = ℎ∗(S), and so does ℎ′. Hence, C = ℎ∗(S) always holds.

The two conclusions (underlined) apparently contradict with each other, and only exactly one of them are correct and
the other is wrong. Choose the best explanation from below - which student’s conclusion is wrong, and why are they
wrong?
# Alice’s conclusion is wrong, because the heuristic ℎ′ is always admissible.
# Alice’s conclusion is wrong, because an inadmissible heuristics does not necessarily always lead to the failure of the
optimality when conducting A* tree search.
# Alice’s conclusion is wrong, because of another reason that is not listed above.
# Bob’s conclusion is wrong, because the node visiting expansion ordering of ℎ′′ during searching might not be the
same as ℎ′.
# Bob’s conclusion is wrong, because the heuristic ℎ′′ might lead to an incomplete search, regardless of its optimally
property.
# Bob’s conclusion is wrong, because of another reason that is not listed above.
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