
Your Name (first last)

← Name of person on left (or aisle)

UC Berkeley
Fall 2019

CS61C Quest

SID

Name of person on right (or aisle) →

Q1) [10 Points] Negate the following nibble binary/hex numbers, or write N/A if not possible.
Remember to write your answer in the appropriate base. (A nibble is 4 bits)

(Unsigned)
0b0101

(Bias = -7)
0b0100

(Bias = -7)
0xF

(Two’s Comp)
0b1100

(Two’s Comp)
0xA

0b 0b 0x 0b 0x

 ...scratch space below...

Q2) [6 Points] Which of the following sums will yield an arithmetically incorrect result when computed
with two’s complement nibbles?
Correct ◯ Incorrect ◯ Correct ◯ Incorrect ◯ Correct ◯ Incorrect ◯

0xD + 0xE + 0xF 0x7 + 0x8 0x3 + 0x5
 ...scratch space below...

Q3) [12 Points] For each of the following representations, what is the fewest number of bits needed to
cover the given range, which is inclusive of the endpoints (e.g., [1, 4] is the numbers 1, 2, 3 and 4).
Write “N/A” if it is impossible. For the Bias Value (final value = unsigned + bias value), we’ll let YOU
specify whatever offset you wish to minimize the total number of bits needed for the Bias encoding.

Range Unsigned One’s Comp Two’s
Comp

Sign&Mag Bias Bias Value

[0, 10] 5 5 0

[-4, -1] 4

[1, 4] 4 2

 ...scratch space below...

For this page, assume all mallocs are successful, all necessary libraries are #included, and any
heap accesses outside what the program allocates is a segmentation fault.

Q4) [12 Points] Which of the following are possible, if perhaps
unlikely, results of attempting to compile and run this code? (select
ALL that apply)

int main() {
 int32_t *str = (int32_t *) malloc(sizeof(int32_t) * 3);
 printf("%s", (char *) str); // A char is 8 bits.
 return 0;

 }

▢ Compilation error due to invalid
typecast
▢ Runtime typecasting error
▢ A segmentation fault
▢ The program prints the empty string
▢ The program prints CS61C
▢ The program prints CS61C rocks!

Q5) [10 Points] Each of the following evaluate to
an address in memory. In other words, they "point"
somewhere. Where in memory do they point?

Q6) [10 Points] The program below runs through the
array of strings, doing something to each of the
characters and putting the results in the dest array.

What are the first 8 characters the program
prints? (Note: The program DOES compile and run
without error.)

 _ _ _ _ _ _ _ _

 Code Static Stack Heap

arr ◯ ◯ ◯ ◯

arr[0] ◯ ◯ ◯ ◯

dest ◯ ◯ ◯ ◯

dest[0] ◯ ◯ ◯ ◯

&arrPtr ◯ ◯ ◯ ◯

// The ASCII values for 'A', 'B', etc. are 65, 66, ... ⇐⇐⇐⇐⇐⇐ Important
// The ASCII values for 'a', 'b', etc. are 97, 98, ... ⇐⇐⇐⇐⇐⇐ Important

char *arr[] = {"Go", "Bears"};

int main() {

 char **arrPtr = arr;

 char *dest[2];

 int j;

 for (int i = 0; i < 2; i++) {

 char *currString = *arrPtr;

 dest[i] = (char *) malloc(strlen(currString) + 1);

 for (j = 0; j < strlen(currString); j++) {

 dest[i][j] = currString[j] & ~(1 << 5); // Hint: Focus on this line!
 }

 dest[i][j] = '\0';

 arrPtr++;

 }

 printf("%s %s", dest[0], dest[1]);

}

