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EECS 16A Designing Information Devices and Systems I
Fall 2019 Midterm 1

Midterm 1 Solution

PRINT your student ID:

PRINT AND SIGN your name: ,
(last name) (first name) (signature)

PRINT your discussion section and GSI(s) (the one you attend):

Name and SID of the person to your left:

Name and SID of the person to your right:

Name and SID of the person in front of you:

Name and SID of the person behind you:

1. Tell us about something you did in the last year that you are proud of. (2 Points)

2. Who is your favorite superhero? Why? (2 Points)

Do not turn this page until the proctor tells you to do so. You may work on the questions above.
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PRINT your name and student ID:

3. Campfire Smores (11 points)
Patrick and SpongeBob are making smores.

There are three ingredients: Graham Crackers, Marshmallows, and Chocolate. To make a smore,
SpongeBob needs: sg Graham Crackers, sm number of Marshmallows, and sc Chocolate.

Ingredients Amount Needed
Graham Crackers (sg) 10
Marshmallows (sm) 14

Chocolate (sc) 20

Table 3.1: SpongeBob’s smore

They find out that these ingredients are only stored in bundles as below:

Lobster Pack (pl)

6 graham crackers
4 marshmallows

2 chocolates

Mr. Krabs Pack (pk)

2 graham crackers
2 marshmallows

1 chocolates

Squidward Pack (ps)

3 graham crackers
3 marshmallows

5 chocolates
Gary Pack (pg)

1 graham crackers
4 marshmallows

5 chocolates

Pearl Pack (pp)

2 graham crackers
3 marshmallows

2 chocolates

Table 3.2: Amount of Ingredients per Bundle

Spongebob and Patrick need to know how many of each bundle to buy: number of "Lobster" Packs, pl ,
number of "Mr. Krabs" Packs, pk, number of "Squidward" Packs, ps, number of "Gary" Packs, pg, and
number of "Pearl" Packs, pp.

(a) (3 points) How many equations/constraints does the information in the problem provide you with?
Solution: In this problem, we have 5 unknowns (the amounts of each pack we need to buy). We
know how many ingredients Spongebob’s smore needs, so we can write three equations: one for the
quantity of graham crackers, sg, one for the quantity of marshmallows, sm, and one for the quantity of
chocolates, sc.
The 3 constraints/equations are:

6pl +2pk +3ps +1pg +2pp = sg = 10

4pl +2pk +3ps +4pg +3pp = sm = 14

2pl +1pk +5ps +5pg +2pp = sc = 20

(b) (4 points) Based on the information provided in Tables 3.1 and 3.2, write an equation of the form

A~p =~s that SpongeBob can use to decide how many of each pack to buy. Here, ~p =


pl
pk
ps

pg

pp

.
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Solution: 6 2 3 1 2
4 2 3 4 3
2 1 5 5 2

~p =

10
14
20



A =

6 2 3 1 2
4 2 3 4 3
2 1 5 5 2

 , ~s =

10
14
20


(c) (4 points) Now, the ingredients in the packets (A) and Spongebob’s receipe (~s) change. We have:

A =

1 1 3 2 2
0 1 3 0 2
1 3 9 2 6

 , and~s =

 3
2

10

.

Find a ~p that satisfies A~p =~s. If no solution exists, explain why not.
Solution: We can solve this using Gaussian elimination:

 1 1 3 2 2 3
0 1 3 0 2 2
1 3 9 2 6 10

R3−R1 7→ R3︷︸︸︷⇒
 1 1 3 2 2 3

0 1 3 0 2 2
0 2 6 0 4 7

R3−2R2 7→ R3︷︸︸︷⇒
 1 1 3 2 2 3

0 1 3 0 2 2
0 0 0 0 0 3



Spongebob’s smore yields an inconsistent system, therefore we cannot find a solution.
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PRINT your name and student ID:

4. Operations on polynomials (8 points)

Matrix multiplication is quite powerful, and can be used to represent operations such as differentiation and
integration. Here we focus on cubic polynomials:

f (x) = c0 + c1x+ c2x2 + c3x3.

where the ci are real scalar coefficients that do not depend on x.

We represent these cubic polynomials as 4-dimensional vectors by stacking the ci — for instance, we will

represent f (x) as the vector ~f =


c0
c1
c2
c3

.

Recall that the derivative of f (x) is f ′(x) = c1 +2c2x+3c3x2. The matrix, D3,

D3 =


0 1 0 0
0 0 2 0
0 0 0 3
0 0 0 0

 ,
represents differentiation, i.e.:

D3


c0
c1
c2
c3

=


c1

2c2
3c3
0

 .
(a) (4 points) Now we consider the integration of quadratic polynomials. For a quadratic polynomial

g(t) = c0 + c1t + c2t2, the definite integral from 0 to x is given by the cubic polynomial:

h(x) =
∫ x

0
g(t)dt = c0x+

c1

2
x2 +

c2

3
x3.

The quadratic polynomial g(·) can be represented as a cubic polynomial by the vector of coefficients

~g =


c0
c1
c2
0

. Note that the last entry of this vector will always be 0.

Find a matrix 4×4 matrix E3 such that E3~g is a vector representing the integral of the quadratic
polynomial g(·). Because we are representing a quadratic polynomial as a cubic, and the last entry of
~g is always 0, we set the last column of E3 to all zeros, i.e. it is of the form:

E3 =


e11 e12 e13 0
e21 e22 e23 0
e31 e32 e33 0
e41 e42 e43 0

 .
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Solution: Let c0, c1, and c2 be such that f (x) = c0 + c1x+ c2x2. Now, we know that

F(x) =
∫ x

0
f (a)da

=
∫ x

0
(c0 + c1a+ c2a2)da

=

[
c0a+

1
2

c1a2 +
1
3

c2a3
]a=x

a=0

= c0x+
c1

2
x2 +

c2

3
x3.

Applying vec3 to both f (x) and F(x), we find that

vec3[ f (x)] =


c0
c1
c2
0



vec3[F(x)] =


0
c0

c1/2
c2/3

 .
Thus, using the linear combination interpretation of matrix multiplication,

vec3[F(x)] =


0
c0

c1/2
c2/3



= c0


0
1
0
0

+ c1


0
0

1/2
0

+ c2


0
0
0

1/3



=


0 0 0 ?
1 0 0 ?
0 1/2 0 ?
0 0 1/3 ?




c0
c1
c2
0

 ,
where the ?s in the last column indicate that the values are indeterminate, since they could be anything
and the equation would still hold. Thus, we know that E3 must be of the form

E3 =


0 0 0 ?
1 0 0 ?
0 1/2 0 ?
0 0 1/3 ?


with unknown ?s.
However, recall that we were also told that

E3(vec3[x3]) = E3


0
0
0
1

=~0.
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This tells us that the last column of E3 must be~0, so we can solve for the ?s to determine that

E3 =


0 0 0 0
1 0 0 0
0 1/2 0 0
0 0 1/3 0

 .

(b) (4 points) E3 is a matrix representing the integration of a quadratic polynomial, and D3 is a matrix
representing the differentiation of a cubic polynomial. Explicitly write a matrix such that M~f cal-
culates the result of first differentiating a cubic polynomial f (x) and then integrating it. What do
you notice about this matrix? For convenience:

D3 =


0 1 0 0
0 0 2 0
0 0 0 3
0 0 0 0

 .
If you prefer, you may write out your answer in terms of the entries of E3 given by:

E3 =


e11 e12 e13 0
e21 e22 e23 0
e31 e32 e33 0
e41 e42 e43 0

 ,
before explicitly computing M as this may help with partial credit. However, you are not required to.
Solution: Composing the transformations represented by first differentiating and then integrating,
we obtain the matrix E3D3. Evaluating it, we obtain

E3D3 =


0 0 0 0
1 0 0 0
0 1/2 0 0
0 0 1/3 0




0 1 0 0
0 0 2 0
0 0 0 3
0 0 0 0



=


0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .
This matrix looks very similar to the identity matrix, but is not the same! Specifically, it knocks out
the first term of a vector it is applied to, so

E3D3(vec3[c0 + c1x+ c2x2 + c3x3]) =


0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1




c0
c1
c2
c3

=


0
c1
c2
c3

= vec3[c1x+ c2x2 + c3x3].

Expressed algebraically, this tells us that differentiating, and then integrating a cubic polynomial will
cause us to lose information about the constant term c0, but we will still be able to retain the other
coefficients.
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PRINT your name and student ID:

5. Drone Dynamics (11 points)
Professor Boser is characterizing the motion of drones with only three propellers, called tri-rotor drones. He

provides commands through motor inputs, ~m =

m1
m2
m3

. The drone position is given by~v =

x
y
z

. The motor

inputs, ~m, affect the position,~v, through the matrix, D. That is,~v = D~m.

Figure 5.1: The lifting forces acting on a tri-rotor drone.

(a) (5 points) Professor Boser considers the matrix D =

1 −1 −1
1 −2 −3
1 0 1

. Can the drone reach any position

in R3 using this matrix? Justify your answer.
Solution: No, the drone cannot reach any position in R3. We can check this by Gaussian elimination
on the following augmented matrix, to see if we can solve for motor inputs ~m that allow for every
position.  1 −1 −1 x

1 −2 −3 y
1 0 1 z


If it so happens that we get expressions for m1, m2, and m3, the left hand side of the augmented matrix
will eliminate to the identity. So by performing the elimination only on the coefficient matrix, we have:1 −1 −1

1 −2 −3
1 0 1

∼
1 −1 −1

0 −1 −2
0 1 2

∼
1 −1 −1

0 1 2
0 0 0

∼
1 0 1

0 1 2
0 0 0


We see that we have a row of zeroes. This indicates that the columns are linearly dependent, and that
for certain x, y, and z, it is not possible to choose m1, m2, and m3 that yield them.

(b) (6 points) Professor Boser is simultaneously testing multiple drones. The first drone can occupy po-

sitions in the columnspace of D1 =

0 0 1
0 1 0
1 0 0

 and the second drone can occupy positions in the

columnspace of D2 =

1 1 2
0 1 1
1 1 2

.

The drones will crash if the columnspaces of D1 and D2 intersect. Find a basis for the subspace that
both drones can reach, i.e. the intersection of the columnspaces of D1 and D2. Where can the drones
crash into each other?
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Hint #1: Observe the columns of D1 and D2. Hint #2: For partial credit, find bases for the columnspaces
of both D1 and D2 individually.
Solution: D1 has the standard basis as its columns. It will span all of R3. Since the first drone
can go anywhere in R3, the intersection of the first and second drone’s columnspaces will be the
second drone’s columnspace. An observation that can be made about the second drone’s columns is
that the third column is a sum of the first two columns. Thus to get a basis, which has to be linearly

independent, we can select only the first two columns of D2. One valid basis is:


1

0
1

 ,
1

1
1

. The

drones can crash into each other for all positions in Span


1

0
1

 ,
1

1
1

.
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PRINT your name and student ID:

6. Aragorn’s Odyssey (22 points)

In a desperate attempt to save Minas Tirith, Aragorn is trying to maneuver your ship in a 2D plane around
the fleet of the Corsairs of the South. The position of your ship in two dimensions (x,y) is represented as a

vector,
[

x
y

]
.

(a) (5 points) In order to evade the Witch-King of Angmar, Gandalf provides Aragorn with linear trans-
formation spell. The spell first reflects your ship along the X-axis (i.e. multiplies the Y-coordinate by
−1) and then rotates it by 30 degrees counterclockwise. Express the transformation Gandalf’s spell
performed on the ship’s location as a 2×2 matrix.

Hint: Recall that the matrix R =

[
cosθ −sinθ

sinθ cosθ

]
rotates a vector counterclockwise by θ .

Solution:

Gspell =

[√
3

2
−1
2

1
2

√
3

2

]
∗
[

1 0
0 −1

]

Gspell =

[√
3

2
1
2

1
2 −

√
3

2

]

(b) (3 points) If the ship was initially 1 unit distance away from the origin (0,0), how far is it from the
origin after the transformation above? Justify your answer.
Solution: 1 unit still - the transformation should not affect the distance from the origin

(c) (6 points) Having evaded the Witch-King and the Corsairs, Aragorn needs to quickly reach Minas
Tirith. To do so, he uses the wind spell, Bspell, ten times, where his position~x[t] changes according to
the equation

~x[t +1] = Bspell~x[t],

where Bspell =

[
2 4
0 3

]
.

The initial location of your ship is~x[0] =
[

1
0

]
. What is the location of your ship at time t = 10, i.e.

what is~x[10]? Explicitly compute your final solution and justify your answer.
Solution: λ1 = 2,λ = 3
Eigenvector~v1 = [10]T corresponds to eigenvalue λ1 = 2
So at time 10 we have: ~x[10] = 210~x[0]

(d) (8 points) The ship is now moving in an n dimensional space. The position of the ship at time t is
represented by~x[t] ∈ Rn. The ship starts at the origin~0.
Aragorn tries a new spell, Cspell ∈ Rn×n, Cspell 6= 0. In addition to the spell, the ship is given some
ability to steer using the scalar input u[t]∈R. The location of the ship at the next time step is described
by the equation:

~x[t +1] = Cspell~x[t]+~bu[t],

EECS 16A, Fall 2019, Midterm 1 9



10

where~b ∈ Rn is fixed.
You know from the Segway problem on the homework that the ship can reach all locations in the
span{~b,Cspell~b,C2

spell
~b, · · · ,C9

spell
~b} in ten time steps. Given that ~b 6= 0 is an eigenvector of Cspell,

what is the maximum dimension of the subspace of locations the ship can reach? Justify your
answer.
Solution: Since~b is an eigenvector of Cspell we will have Ck~b = λ k

b
~b, this means that:

dim(span{~b,Cspell~b,C2
spell

~b, · · · ,C9
spell

~b}) = 1
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PRINT your name and student ID:

7. Color vision (22 points)

This problem will explore how our eyes see color.

Let~x =


xviolet
xblue
xgreen
xyellow

xred

 and~y =

 yshort
ymedium

ylong

 . Let~y = A~x.

For this problem, light from a point in the world is an input light vector, ~x, as above, where the entries
represent the intensities of different colors of light. Our eye has three types of cone cells, short, medium and
long, and the light recorded by the eye can be represented by the eye vector,~y, as above.

Our vision system can be represented as a linear transformation (A) of the input light vector (~x) onto the
cone cells in our eyes to form the eye vector, (~y). That is,~y = A~x.

Distinct light vectors,~x1,~x2 ∈ R5, ~x1 6=~x2, can result in the same eye vector,~y. That is A~x1 = A~x2 =~y.
This concept is referred to as a metamerism.

(a) (4 points) For this subpart A =

1
4

3
4 0 0 0

0 0 1 0 0
0 0 0 1

2
1
2

. You are given four light vectors, ~x, below. Some

of them result in the same eye vector, ~y. Fill in the circles (completely) to the left of each light
vector, ~x, that result in the same eye vector, ~y. (There is no partial credit for this subpart. Space in
the below box is for scratch and will not be graded.)

©


1
0
0
1
1

 ©


1
0
1
2
0

 ©


3
0
0
1
1

 ©


1
0
1
1
1


Solution: 2nd and 4th both give~y = [.25,1,1]T

(b) (6 points) Analyzing the null space of A will help us explain the concept of metamerism. Find the
null space of A and provide a set of basis vectors that span it.

A =

1
4

3
4 0 0 0

0 0 1 0 0
0 0 0 1

2
1
2

 .
Solution:

Null(A) = span




−3
1
0
0
0

 ,


0
0
0
1
−1



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(c) (8 points) People with color blindness cannot see as many unique colors. Color blindness can be
modeled by left-multiplying the color blindness matrix, B, with the vision’s matrix, A, so that~y=BA~x.
In this part, consider generic matrices A and B, unrelated to the earlier parts.
Prove that the dimension of the null space of BA is greater than or equal to the dimension of the
null space of A. That is:

dim(Null(BA))≥ dim(Null(A)).

Hint: Can you show that every vector from one nullspace must belong to the other?
Solution: Let ~w ∈ Null(A),

BA~w = B~0 =~0

Therefore ~w ∈ Null(BA).

(d) (4 points) We also want to examine how a matrix B alters the column space of matrix A. In this part,
consider generic matrices A and B, unrelated to the earlier parts.

dim(Column space(BA))≥ dim(Column space(A))

Is the above statement true or false? If true, prove it, if false, provide a counter example (i.e. an
example of A and B where the inequality does not hold). Hint: There are no restrictions on what A
or B can be.

Solution: False, show counter example. Let A =

[
1 0
0 1

]
and B =

[
1 0
0 0

]
.

[
1 0
0 0

][
1 0
0 1

]
=

[
1 0
0 0

]
The dimension of the column space of A is two. The dimension of the column space of BA is one. The
statement is false.
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PRINT your name and student ID:

8. The DeliveryBot (13 points)

DeliveryBot is a service opening soon to deliver food from a restaurant to Wheeler Hall and Cory Hall, each
represented by the R, W , and C nodes on the state transition diagram below, respectively. The number of
DeliveryBots at the restaurant, Wheeler Hall, and Cory Hall are xR[t], xW [t], and xC[t], respectively. The
owner of the company has asked for your expertise to track the number of DeliveryBots at each location!

Based on market research, the owner gives you predictions about the movement of DeliveryBots:

a ) A DeliveryBot!

b ) Delivery state transition diagram.

(a) (3 points) Let~x[t] =

xR[t]
xW [t]
xC[t]

. Write the transition matrix S, where~x[t +1] = S~x[t].

Solution: Writing out the system of equations,

xR[t +1] = 0.2xR[t]+1xW[t]+1xC[t]

xW[t +1] = 0.4xR[t]

xC[t +1] = 0.4xR[t]

It helps to write these out so you don’t accidentally use the transpose!
Converting the equations from above to matrix form:

S =

0.2 1 1
0.4 0 0
0.4 0 0


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(b) (3 points) For this part of the problem you may assume the state transition matrix is S =

0.4 0 0
0.2 0 0
0.4 1 1

,

unrelated to part (a).
The owner counts the number of bots at each location at t = 2 and would like to infer the number of
bots at time t = 1 in each location.
Can you help the owner compute the number of bots in each location at time t = 1? If this is
possible, write~x[1] in terms of~x[2]. If this is not possible, justify why.
Solution: No. Since the columns of S are linearly dependent, we know that there does not exist an
inverse to matrix S. As proved in lecture and discussion, there is no unique solution to S~x[1] =~x[2].

(c) (7 points) Unexpectedly, some squirrels have been attacking the DeliveryBots in order to access any
potential food inside! When a squirrel attacks a DeliveryBot, the DeliveryBot goes to the new S node
(secret squirrel node) on the state transition diagram in Figure 8.2.

The number of DeliveryBots at node S are xS[t]. Let~z[t] =


xR[t]
xW [t]
xC[t]
xS[t]

 represent the number of Delivery-

Bots at each of nodes in the state transition diagram. The state transition matrix for this new scenario is

T =


0.2 0.5 0.5 0
0.2 0 0 0
0.2 0 0 0
0.4 0.5 0.5 1

. The eigenvalues and eigenvectors corresponding to this matrix T are given

by: λ1 = 1,~v1 =


0
0
0
1

, λ2 = 0.558,~v2 =


2.79

1
1

−4.79

, λ3 = 0,~v3 =


0
1
−1
0

, λ4 =−0.358,~v4 =


−1.79

1
1

−0.21

.

Furthermore,


20
0
0
0

= 20~v1 +4.367~v2−4.367~v4.

The restaurant owner starts out with 20 DeliveryBots at the restaurant. At steady state (t → ∞), how
many bots are in each of the locations?
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Figure 8.2: New DeliveryBot state transition diagram.

Solution: All 20 of the bots will be broken and end up at node S. The state vector will be


0
0
0

20

.

Applying the T matrix n times to ~z[0] yields λ n
1 20~v1 + λ n

2 4.367~v2 − λ n
4 4.367~v4. As n approaches

infinity, the only component of~z[0] that remains is 20~v1. This is because λ2, λ3, λ4 whose magnitudes
are less than one.
From a more intuitive approach, we can first note that the system is conservative. This means that the
total number of bots stays the same at every timestep. At each timestep 0.4 of the bots at the restaurant,
0.5 of the bots at Wheeler, and 0.5 of the bots at Cory all go to node S. Once the bots are at node S, they
cannot leave. In other words, a bot has a non-zero probability of being broken, but zero probability of
getting fixed. Eventually as t becomes large, all the bots will be stuck at node S.
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PRINT your name and student ID:

9. Proof (9 points)

Consider a square matrix A. Prove that if A has a non-trivial nullspace, i.e. if the nullspace of A contains
more than just~0, then matrix A is not invertible.

Justify every step. Proofs that are not properly justified will not receive full credit. Simply invoking a theorem
such as the “Invertible Matrix Theorem” will receive no credit.

Solution: We are given that the nullspace of A contains a vector other than~0. Let such a vector be~y 6=~0,
where A~y =~0. Imagine, for the sake of contradiction, that A had an inverse A−1. Then we find that

A~y =~0

=⇒ (A−1A)~y = A−1~0

=⇒ ~y =~0,

since by the definition of an inverse, A−1A = I.

But we said that ~y 6=~0, so this is a contradiction! Therefore, our original hypothesis must have been false,
so A cannot have an inverse.

Thus, the matrix A is not invertible.

EECS 16A, Fall 2019, Midterm 1 16


