Solutions to the Midterm Exam — Linear Algebra

Math 110, Fall 2019. Instructor: E. Frenkel

Problem 1. Let V be the subspace of P»(R) that consists of all polynomials p(t) of degree
less than or equal to 2, such that
1
/ p(t)dt = 0.
0

Construct a basis 8 of V' and prove that it is a basis.

Solution. Let p(t) = ag + a1t + agt®. Then folp(t)dt = 0 means that ag + 3a; + taz = 0.
We claim that
B={1-2t1-3t*}
is a basis of this subspace (of course, it’s just one of many possibilities). To prove this, note
that this subspace — denote it by V' — is the null-space N(T') of the linear transformation
T : P(R) — R sending p(t) to fol p(t)dt. This linear transformation is onto, because

fol cdt = c for any ¢ € R. Hence R(T) = R, and by Dimension Theorem, dimV =3—1 = 2.
Since [ consists of two elements, in order to prove that [ is a basis of V, it is sufficient to
prove that ( is linearly independent. Clearly, any non-zero scalar multiple of (1 — 2¢) is a
polynomial of degree 1, so it cannot be equal to (1 — 3t?) which is a polynomial of degree
2. Therefore (8 is [ is indeed linearly independent; hence a basis of V.

Problem 2. Let M € M, ,(F), where F' is a field, be an upper triangular matrix with
non-zero diagonal entries. Prove that the columns of M form a basis of F™.

Solution. This was explained in detail during a lecture, and there was also a closely
related homework problem.

We know that dim F" = n (because it has a canonical basis with n elements). Since we
have a set of n columns of M, if we prove that this set is linearly independent, then it will
follow that it is a basis of F™.

Denote the ith column by v;. Suppose that we have a linear relation
(1) Zaﬂii :Q, a; € F.
i=1

Suppose that at least one of the a; is non-zero. Let j be the maximal integer from 1 to n
such that a; # 0. Then the jth entry of the LHS of (1) is equal to a; - v;;, where vj; is the
jth entry of v;, which is the diagonal entry M;; of M. Since the diagonal entries of M are
non-zero, we have v;; # 0. We have assumed that a; # 0. Hence a; - vj; # 0, which means
that the equation (1) cannot be satisfied. This is a contradiction. Hence all a; are equal to
0, and the set {vy,...,v,} is linearly independent. Therefore it is a basis of F™.

Problem 3. Let T': P;(C) — P»(C) be defined by the formula T'(p(t)) = 2p'(t) — 3p"(¢).

Consider P3(C) and P,(C) as vector spaces over C. Prove that 7T is a linear transforma-
tion between them and compute its matrix [T}, where 3 is the standard monomial basis
and v = {1,t —1,t* — 1}.
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Solution. We find
T(1)=0, T@#)=2-1, T =4—-6=(-2)-1+4-(t—1),
Tt =6t> — 18t = (—12)-14+6- (> —1) — 18- (t — 1)

Thus,
0 2 -2 —12
[T]g =10 0 4 -—18
00 O 6

Problem 4. Let V be a two-dimensional vector space over R and T : V' — V a linear
transformation. Suppose that 8 = {x1, 22} and v = {y1, y2} are two bases in V such that

Y1 = T1 + T2, Yo = X1 + 2.

- (3 )

Find [T)s if

Solution. We have

where

It is easy to compute that

Therefore

= e = (10 )

Problem 5. Let P*(R) be the set of real polynomials p(t) in one variable of degree less
than or equal to n and such that the values of p(t) at t = 1,2,... k are all equal to 0, i.e.
p(1) =p(2) = ... = p(k) = 0. Assume that 0 < k < n. Prove that P*(R) is a vector space
over R, and prove that the dimension of P*(R) isn —k + 1.

Solution. First, let’s prove that P*(R) is a subspace of P,(R). By a theorem from the
book, it is sufficient to show that P*(R) is closed under addition and scalar multiplication
and that the zero polynomial is an element of P¥(R). All three properties are clear. So
PE(R) is a subspace of P,(R) and hence it is a vector space.

Now we compute the dimension of P*(R).

First computation. It is known from high school algebra that every polynomial p(t) that

vanishes at ¢1, . .., ¢, has the form p(t) = ¢(t) Hle(t—cl-), where ¢(t) is another polynomial.

Therefore every p(t) € P¥(R) has the form q(t) []"_,(t — i), where ¢(t) € P,_(R). Define

i=1
amap U : P,(R) — P*R) sending ¢(t) to q(t) Hle(t — ). It is clear from the definition
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that U is a linear transformation, and furthermore, an isomorphism. Hence dim P*(R) =
dim P, x(R)=n—Fk+ 1.

Second computation. Consider the map T : P,(R) — R* sending

p(1)
p(2)

p(t) =

p(k)
This is a linear transformation because the value of ¢p(t) + ¢(t) at m is ecp(m) + q(m).
Clearly, N(T) = P*(R), and we know that dim P,(R) = n + 1. Hence, by Dimension

Theorem, dim P¥(R) = (n + 1) — dim R(T). To prove that that the dimension of P*(R) is
n — k + 1, we therefore need to prove that T is onto.

This follows from the statement of homework problem 2.6.10(b): there exist polynomials
pi(t),i=1,...,n+ 1, such that p;(j) = d;,; for all j =1,...,n+ 1. This means that

a1
k
T <Z aipi(t)> = .a‘2' , Yai,...,a, € R.
i=1 o

Problem 6. Consider the vector space W = {p(t) = a + bt*|a,b € R}. Let f; and f, be
the linear functionals on W, such that fi[p(t)] = p(1), and f2[p(t)] = p(2).

Find the basis of W for which {fi, fo} is the dual basis.

Solution is similar to the solution of the homework problem 2.6.5 (which was explained
during a lecture) and Example 4 of Section 2.6.

Problem 7. Let A and B be two n X n matrices such that AB = [,,. Prove that then
necessarily BA = I,, as well.

Solution. This was explained in detail during a lecture, and this was the homework
problem 2.4.10. Let L, (resp. Lp) be the linear transformation F" — F™ sending v — Av
(resp. Bv). Then Ly (resp. Lp) is invertible if and only if A (resp. B) is invertible.
Furthermore, AB = I,, implies that L4 o Lg = Ipn, hence invertible. But then N(Lp) =
{0}, for otherwise there is v # 0 such that Lp(v) = 0, and then Lo Lg(v) = La(Lp(v)) =
L4(0) = 0, which contradicts L4 o Lp being invertible. Since N(Lg) = {0}, Lp is one-to
one. By the Dimension Theorem, dim R(Lg) = n and so Lp is also onto. Thus, Lp is
invertible. Hence there exists a matrix C' such that CB = BC = I,,. Now, multiplying
both sides of AB = I,, on the right by C' we find that (AB)C' = C, hence A = Al,, =
A(BC) = (AB)C = C, and then BC = I,, implies BA = I,,.

Remark. Note that it is necessary to prove first that B is invertible, i.e. there exists a
matrix C' such that CB = BC = I,,. Otherwise, there is no such thing as B~!. Alterna-
tively, one can prove that A is invertible and then use A~! in a similar way. Otherwise,
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there is no such thing as A7!. So, without either of these arguments, we cannot use A~!
or B71.

Recall that a matrix A is called invertible if AB = I,, and BA = I,,. Formula AB = I,
alone does not guarantee that A or B is invertible. For this reason, any solution to this
problem in which the existence of A~ or B! was taken for granted was given 0 points.

Alternative solution. Multiplying both sides of AB = [, on the left by B, we get
BAB = B. Hence (BA — I,)B = 0. Next, we prove (as above) that B is invertible. Then
we claim that BA — I, = 0, or equivalently, (BA—I,,)x = 0 for all z € F". Indeed, since B
is invertible, there exists y € F" such that x = By. Hence (BA—1,)v = (BA—1,)B-y =
0-y=0. Thus, BA—1,=0, and so BA=1,.

Remark. A number of students claimed that (BA — I,)B = 0 implies BA — I,,. But
this only follows if we prove first that B is invertible (see above). Note that if we have two
n x n matrices X and Y, with n > 1, then XY = 0 does not imply that X =0 or Y = 0.



