CS 61BL Data Structures & Programming Methodology

Summer 2019 MIDTERM 2 SOLUTION

This exam has 7 questions worth a total of 45 points and is to be completed in 110 minutes.
The exam is closed book except for two double-sided, handwritten cheat sheets. No calculators or

other electronic devices are permitted. Give your answers and show your work in the space provided.

Write the statement below in the blank provided and sign. You may do this before the exam begins.
“I have neither given nor received any assistance in the taking of this exam.”

I have neither given nor received any assistance in the taking of this exam.

Signature: Matthew Sit

Question | Points Name Matthew Sit
1 5
9 7 Student 1D 1234567890
3 12
GitHub account # sul9 - sl
4 0
5} 6 Lab Section # 0 0 1
6 6
Name of person to left Jackson Leisure
7 9
Total 45 Name of person to right Christine Zhou

e There may be partial credit for incomplete answers. Write as much of the solution as you can,

but we may deduct points if your answers are much more complicated than necessary.

e Work through the problems with which you are comfortable first. Do not get overly captivated

by interesting design issues or complex corner cases you're not sure about.

o Not all information provided in a problem may be useful, and you may not need all lines. For

code-writing questions, write only one statement per line and do not write outside the lines.

o Unless otherwise stated, all given code on this exam should compile. All code has been compiled
and executed, but in the event that we do catch any bugs in the exam, we’ll announce a fix.

Unless we specifically give you the option, the correct answer is not, ‘does not compile.

CS 61BL Midterm 2, Summer 2019

. (5 pts) Mechanical Balanced Search Trees

We learned that 2-3 Trees have a one-to-one correspondence with Left-Leaning Red-Black

Trees. For each subpart in this question, take the 2-3 Tree given in the left column and perform the

indicated operation on it, drawing the resulting 2-3 Tree below the given tree. Then convert both

the given 2-3 Tree and the 2-3 Tree you drew into LLRB Trees, drawing them in the right column

next to their counterparts.

Indicate a node is red by putting an asterisk (*) next to it. You must use the conventions and

procedures we taught in lab this summer. Only your final answer within the boxes will be graded;

perform any scratch work (which will not be graded) outside of the boxes.

(a) insert(5);

2-3 Tree before operation

LLRB Tree before operation

2-3 Tree after operation

LLRB Tree after operation

(b) insert(6);

Name: Matthew Sit

2-3 Tree before operation

2-3 Tree after operation

Pragy
s | s

|

N

LLRB Tree after operation

LLRB Tree before operation

(c) insert(2);

o1 || 5

2-3 Tree before operation

LLRB Tree before operation

2-3 Tree after operation

LLRB Tree after operation

;s

CS 61BL Midterm 2, Summer 2019

. (7 pts) Heaps Spark Joy
Shown below is a binary Min Heap, in which each symbol represents a node in the heap. The
values contained within the nodes are comparable, and are not necessarily unique (except for the

allowance of duplicate values here, all of the heap invariants from lab apply).

For each of the following questions, select all possible relationships that could occur between the
values represented by the letter and symbol shown. IMPORTANT: For this entire question, assume

that X > Y. Erase any undesired markings from boxes completely if you change your answer.

(a) Mark all that could be true of X:

DX<§ DX:% B =

.X<% .X_% .X>%

.X<5 .X:é .X>5
(b) Mark all that could be true of Y:

|:|Y< .Y: .Y>

By < D By - [By
<58 > B8

.Y<@ DYz@ DY>@

(¢) Representing the heap using the array representation from lab (in which elements begin starting

at index 1), at what index will Y be located at? Write your integer answer in the blank below.

Answer: 4

Images courtesy of Google Noun Project.

Name: Matthew Sit

3. (12 pts) #BARTable

Assume the standard java.util.LinkedList is imported everywhere as needed in this question.

Bay Area Rapid Transit is the local rail and subway transportation system. From the nearby
Downtown Berkeley station, you can travel to a number of exciting destinations in varying amounts
of time. Our goal here is to print the names of all the stations, ordered by their travel times from

Berkeley (from shortest to longest). A Station is represented as:

public class Station {
String name;
int travelTime;
LinkedList<Station> children = new LinkedList<>();

public Station(String name, int travelTime) {
this.name = name;

this.travelTime = travelTime;

Note that the travelTime of a Station represents the travel time from the Berkeley station (not

from another neighboring station).

We can build a tree of Stations rooted at the Berkeley station:

elcerrito
9

berkeley
0

macarthur

embarcadero
22

civiccenter
27

dublin
57

From this example tree, the expected result should be:

berkeley macarthur elcerrito embarcadero civiccenter dublin

Assume there are no cycles/loops in our rail system, and that every child station has a travelTime

that is strictly greater than that of its parent.

CS 61BL Midterm 2, Summer 2019

(a) One simple way to solve this is to use a priority queue.

Implement the print method below using a priority queue. The argument berkeley repre-
sents the Berkeley Station, the root of the tree. Java’s PriorityQueue constructor accepts a
Comparator, which it uses to order its elements. For this part, write a lambda expression
to satisfy the Comparator argument. Recall that a Comparator’s compare function "Returns
a negative integer, zero, or a positive integer as the first argument is less than, equal to, or

greater than the second."

public static void print(Station berkeley) {
PriorityQueue<Station> pg = new PriorityQueue<>(

(o1, 02) -> ol.travelTime - o2.travelTime)

pq.add(berkeley);

while (!pg.isEmpty()) {
Station curr = pq.remove();
System.out.print(curr.name + " ");
pq.addAll(curr.children); // pass in a List

The use of a lambda statement as the Comparator is a syntactical shortcut. Implement the

following StationComparator which could be used instead.

import java.util.Comparator;

class StationComparator implements Comparator<Station> {
@Override
public int compare(Station ol, Station o2) {

return ol.travelTime - o02.travelTime;

Demonstrate how the StationComparator would be used in this line from the print function

in place of the lambda that we used previously.

PriorityQueue<Station> pg = new PriorityQueue<>(

new StationComparator());

Name: Matthew Sit

(¢) What happens if the @0verride line is deleted from above the StationComparator’s compare
function, assuming that all of the blanks are filled in with the correct solution?

(Choose one answer.)

O Compiler Error

O Runtime Error

(O Unexpected Behavior
@ No Difference

(d) Another way to solve this problem is to use a BFS-inspired approach. But before we fully
implement that in part e, let’s first remind ourselves of the standard BFS procedure.

Run BFS (Breadth First Search) as you learned in lab on the example tree from before (repro-
duced below), starting with the berkeley station. When inserting multiple children into the

fringe, insert in order from lowest to highest travel time.

elcerrito
9

berkeley
0

macarthur
6

embarcadero
22
civiccenter
27

BFS Traversal (one station name per line):

berkeley

macarthur

elcerrito

embarcadero

dublin

civiccenter

In general, this doesn’t always work in helping us print the station names in order of travel

time, so your answer here may or may not match the example’s expected output.

CS 61BL Midterm 2, Summer 2019

(e) A little trick resolves the problem we have with ordinary BFS: use dummy nodes such that
the travelTime difference between any two consecutive nodes (whether a real Station or just
a dummy node) is 1. For example, as shown below, since sanbruno has a child sfo that is 3

more away from it than its own travelTime of 122, we use two dummy nodes between them.

sanbruno null null sfo
122 123 124 125

Implement print2 to do the same thing as print but using this BFS approach instead. For
your fringe, we will use a LinkedList, which can behave as either a stack or queue, depending

on your usage of its addFirst, addlLast, removeFirst, removelLast methods.

public static void print2(Station berkeley) {
LinkedList<Station> fringe = new LinkedList<>();
fringe.add(berkeley);

while (!fringe.isEmpty()) {

Station curr = fringe.removeFirst();

if (curr.name != null) {
System.out.print(curr.name + " ");
}
for (Station child : curr.children) {
if (child.travelTime - curr.travelTime > 1) {
Station dummy = new Station(null, curr.travelTime + 1);

dummy.children.add(child);

fringe.addLast(dummy);
} else {

fringe.addLast(child);

Name: Matthew Sit

(f) Answer the following runtime questions in terms of the following variables:

« N, the number of official Stations (not including dummy nodes).

e M, the number of nodes in the tree, including both dummy nodes and official Station nodes.

Make sure to use the correct asymptotic bound notations (O, €2, ©) and to write them clearly
(if you mean to write O, do not put a little loop at the top, because it may be interpreted as a

©). Simplify your answers.

What is the runtime of the priority queue printing algorithm (print from part a), in terms of N7

What is the runtime of the BFS printing algorithm (print2 from part e), in terms of M?

O(M)

4. (0 pts) PNH

Name the type of bi-directional text in which alternating lines are read in opposite directions, similar

to the direction an ox takes whilst plowing a field.

Boustrophedon Text

CS 61BL Midterm 2, Summer 2019

. (6 pts) Lost and Found

A Lost and Found is a place where lost items are turned in and where people looking for their lost

items can check to see if they’ve been found.

We are managing a Lost and Found, and we decided to use a HashMap<Ticket, Object> to store
people’s lost belongings. When someone finds a lost item and brings it to us, we create a Ticket,
and store it and the item in the map. When someone asks us to look for an item they had lost, we
make a new Ticket and use that to query our map. Since our lost and found just opened, the map

is initially empty.

(a) To be able to use Ticket instances as keys in our map, we need to implement the equals
method. Two Tickets should be considered the same if the location Strings spell out the same

word, and if the provided function says the descriptions are similar enough.

public class Ticket {
String location;
String description;

public boolean equals(Object o) {
if (!(o instanceof Ticket)) {

return false ;

3
Ticket t = (Ticket) o ;
// The next two blanks are for one long statement.

return this.location.equals(t.location) && isSimilar(description, t.description);

// Returns true if the two argument strings are "similar enough".
private static boolean isSimilar(String d1, String d2) {
// Implementation not shown.

public int hashCode() {
return location.hashCode() + description.hashCode();

10

(b)

Name: Matthew Sit

In one situation, a Phone was turned in to us. A Ticket t1 was made for it and this pair was
put into the map. When the owner came for it, a Ticket t2 was made, and the Phone was

successfully retrieved from the map using t2.

In another situation, a Charger was turned in to us. A Ticket t3 was made for it and this
pair was put into the map. After that, we found out that the Charger was actually found in
a different location, and so we updated t3 using a reference we still had to it (i.e. we used a
line like t3.location = ...). When it was to be retrieved, a Ticket t4 was made. t4 should
have matched the updated t3, but the map strangely returned null rather than the Charger

as desired.

Why? Write no more than 25 words explaining this. Take note of the hashcode function from

the Ticket class from part a.

The key was mutated and so was its hashcode.

The pairing is still assigned to the original bucket, and so cannot be found.

Subsequent to the events from the previous part, one thousand Shirts were turned in to us,
and so we made a Ticket for each Shirt, and put them all into the map. After that, we again

tried looking for t3 using t4, and miraculously the Charger is successfully retrieved this time.

Why? Write no more than 25 words explaining this.

The addition of so many more entries probably forced a resize

of the map’s underlying array, causing everything to be rehashed.

11

CS 61BL Midterm 2, Summer 2019

6. (6 pts) Game Trees

(a) Given the following mimimaz tree, put an X on the branches that would be pruned using

12

alpha-beta pruning, and fill in each node with the value that it will return. The values in the

nodes should account for alpha-beta pruning (i.e. do not write in a value that will never be seen).

The upward triangles represent maximizers and the downward triangles represent minimizers.

pruned

Name: Matthew Sit

(b) In the tree below, again the downward triangles represent minimizers and the upward triangles
represent maximizers. The provided values shown on the non-leaf nodes are the values with
alpha-beta pruning already performed. The branches with X’s through them represent branches

that have been pruned.

For each leaf node that is labeled with a letter, of the value options listed, mark all values for
which it can be, given all of the provided values and also the branches that are pruned. You

may make notes on this tree diagram, but it will not be graded.

/-
o o

VARV Mo\

10

(a) Mark the checkbox next to all of the values that Node A can be.
O2 0O« M6 0Os O10

(b) Mark the checkbox next to all of the values that Node B can be.
o WN: BNs 0O8 0O

(¢) Mark the checkbox next to all of the values that Node C can be.
O2 O4 MWe MW Mo

(d) Mark the checkbox next to all of the values that Node D can be.

) P s s BN

(e) Mark the checkbox next to all of the values that Node E can be.
O2 M4 DOe6¢ Os O10

(f) Mark the checkbox next to all of the values that Node F can be.
m: N4 0O6¢ 0Os O

13

CS 61BL Midterm 2, Summer 2019

. (9 pts) Decision Tree

Here you will implement a tree structure that is commonly used in machine learning since it naturally

resembles an easy to interpret flow-chart.

here, but typically these would be learned from training data.

Assume the standard java.util.HashMap is imported everywhere as needed in this question.

(a) Every day when lunchtime rolls around, Christine, Matt, and Jackson experience a different

14

craving, which can be described by several Attributes. In order for us to determine whether a
restaurant will satisfy our overall craving, we need to be able to compare individual Attributes

of our craving and the Attributes a restaurant can offer.

Fill in the blank below so that Attribute implements the Comparable interface.

public class Attribute implements Comparable<Attribute> {

public String name;
public int value;

public Attribute(String name, int value) {
this.name = name;
this.value = value;

/*%

* Returns a negative integer, zero, or a positive integer as this Attribute
* is less than, equal to, or greater than the specified Attribute in value.
*

* Assumes that the Attributes have names that are .equals().

*/

@Override

public int compareTo(Attribute o) {

return this.value - o.value;

The non-leaf attributes and split values are hard-coded

Name: Matthew Sit

(b) We will use Attributes in two ways. First we will put together a HashMap<String, Attribute>
craving (passed in as the argument to the predict functions below, which you’ll be implement-
ing) that describes what we're looking for in a satisfactory meal. The String key of the map is

the same as the name field of the corresponding Attribute values (for ease of use).

Secondly, we will be creating a binary tree out of non-leaf nodes (called Node, illustrated as
rectangles below), and each of these store a single Attribute instance. The name of the Node’s
Attribute attr will have the same name as one of the Attributes in craving, and we use its

value as the node’s "split value".

We will compare the Attributes in the craving to those in the Nodes of the tree. During a
call to its predict function, if said matching Attribute of the craving argument has a value
that is less than or equal to that of attr’s split value, we look at the left subtree to re-
cursively continue looking for our lunch destination. Otherwise, if the value is greater than
the split value, we look at the right subtree. When a leaf-node is reached (Leaf, illustrated

as ovals below), the restaurant field of that node indicates the prediction result to be returned.

Consider querying the example tree below with a craving consisting of the following:
e "expensiveness" to Attribute("expensiveness", 12).
o "distFromSodaHall" to Attribute("distFromSodaHall", 7).

e "vegetarianFriendliness" to Attribute("vegetarianFriendliness", 40).

A call of predict(craving) on the root node should return "akis". This is because the craving
has an "expensiveness" value of 12, which is greater than that of the root so we proceed to
root.right. There, we see that the craving has a "vegetarianFriendliness" value of 40,

which is less than or equal to 40, so we proceed left and return that Leaf’s restaurant.

Node

name: “expensiveness”

value: 11
Node /N
name: “distFromSodaHall” name: “vegetarianFriendliness”
value: 70 value: 40

restaurant: restaurant: restaurant: restaurant:

“chengdu” “mountainmikes” “akis” “jotmahal”
Leaf Leaf Leaf Leaf

continued on next page...

15

CS 61BL Midterm 2, Summer 2019
Fill in the blanks to complete the predict function implementations such that a provided

craving will find its way to the appropriate Leaf and return the restaurant it best describes.

You may not need all lines provided. No more than one statement per line.

public class Node {
public Node left, right;
public Attribute attr;
public Node(String name, int value) {
this.attr = new Attribute(name, value);

String predict(HashMap<String, Attribute> craving) {

int ¢ = craving.get(attr.name).compareTo(attr);

if (c <=0) |

return left.predict(craving);

} else {

return right.predict(craving);

3

public class Leaf extends Node {
public String restaurant;

public Leaf(String restaurant) {

super(null, -1);
this.restaurant = restaurant;

@0verride

String predict(HashMap<String, Attribute> craving) {

return restaurant;

16

Name: Matthew Sit

(¢) Answer the following runtime questions in terms of the following variables:
e N, the number of Nodes in the binary decision tree.

Make sure to use the correct asymptotic bound notations (O, 2, ©) and to write them clearly
(if you mean to write O, do not put a little loop at the top, because it may be interpreted as a

©). Simplify your answers.

What is the best case runtime of calling predict on the root of the decision tree and making
recursive calls until we get a String answer? Note that the decision tree is not necessarily
balanced. Assume that deletions are never performed on our tree (if this fact is relevant to your

analysis).

(1)

The worst case?

o)

17

