
CS 61BL Data Structures & Programming Methodology
Summer 2019 Midterm 2

This exam has 7 questions worth a total of 45 points and is to be completed in 110 minutes.
The exam is closed book except for two double-sided, handwritten cheat sheets. No calculators or
other electronic devices are permitted. Give your answers and show your work in the space provided.

Write the statement below in the blank provided and sign. You may do this before the exam begins.

“I have neither given nor received any assistance in the taking of this exam.”

Signature:

Question Points

1 5

2 7

3 12

4 0

5 6

6 6

7 9

Total 45

Name

Student ID

GitHub account # su19 - s

Lab Section #

Name of person to left

Name of person to right

• There may be partial credit for incomplete answers. Write as much of the solution as you can,
but we may deduct points if your answers are much more complicated than necessary.

• Work through the problems with which you are comfortable first. Do not get overly captivated
by interesting design issues or complex corner cases you’re not sure about.

• Not all information provided in a problem may be useful, and you may not need all lines. For
code-writing questions, write only one statement per line and do not write outside the lines.

• Unless otherwise stated, all given code on this exam should compile. All code has been compiled
and executed, but in the event that we do catch any bugs in the exam, we’ll announce a fix.
Unless we specifically give you the option, the correct answer is not, ‘does not compile.’

CS 61BL Midterm 2, Summer 2019

1. (5 pts) Mechanical Balanced Search Trees

We learned that 2-3 Trees have a one-to-one correspondence with Left-Leaning Red-Black

Trees. For each subpart in this question, take the 2-3 Tree given in the left column and perform the
indicated operation on it, drawing the resulting 2-3 Tree below the given tree. Then convert both
the given 2-3 Tree and the 2-3 Tree you drew into LLRB Trees, drawing them in the right column
next to their counterparts.

Indicate a node is red by putting an asterisk (*) next to it. You must use the conventions and
procedures we taught in lab this summer. Only your final answer within the boxes will be graded;
perform any scratch work (which will not be graded) outside of the boxes.

(a) insert(5);

2

Name:

(b) insert(6);

(c) insert(2);

3

CS 61BL Midterm 2, Summer 2019

2. (7 pts) Heaps Spark Joy

Shown below is a binary Min Heap, in which each symbol represents a node in the heap. The
values contained within the nodes are comparable, and are not necessarily unique (except for the
allowance of duplicate values here, all of the heap invariants from lab apply).

For each of the following questions, select all possible relationships that could occur between the
values represented by the letter and symbol shown. IMPORTANT: For this entire question, assume
that X > Y . Erase any undesired markings from boxes completely if you change your answer.

(a) Mark all that could be true of X:

2 X < 2 X = 2 X >

2 X < 2 X = 2 X >

2 X < 2 X = 2 X >

(b) Mark all that could be true of Y :

2 Y < 2 Y = 2 Y >

2 Y < 2 Y = 2 Y >

2 Y < 2 Y = 2 Y >

(c) Representing the heap using the array representation from lab (in which elements begin starting
at index 1), at what index will Y be located at? Write your integer answer in the blank below.

Answer:

Images courtesy of Google Noun Project.

4

Name:

3. (12 pts) #BARTable

Assume the standard java.util.LinkedList is imported everywhere as needed in this question.

Bay Area Rapid Transit is the local rail and subway transportation system. From the nearby
Downtown Berkeley station, you can travel to a number of exciting destinations in varying amounts
of time. Our goal here is to print the names of all the stations, ordered by their travel times from
Berkeley (from shortest to longest). A Station is represented as:

public class Station {

String name;

int travelTime;

LinkedList<Station> children = new LinkedList<>();

public Station(String name, int travelTime) {

this.name = name;

this.travelTime = travelTime;

}

}

Note that the travelTime of a Station represents the travel time from the Berkeley station (not
from another neighboring station).

We can build a tree of Stations rooted at the Berkeley station:

From this example tree, the expected result should be:

berkeley macarthur elcerrito embarcadero civiccenter dublin

Assume there are no cycles/loops in our rail system, and that every child station has a travelTime

that is strictly greater than that of its parent.

5

CS 61BL Midterm 2, Summer 2019

(a) One simple way to solve this is to use a priority queue.

Implement the print method below using a priority queue. The argument berkeley repre-
sents the Berkeley Station, the root of the tree. Java’s PriorityQueue constructor accepts a
Comparator, which it uses to order its elements. For this part, write a lambda expression

to satisfy the Comparator argument. Recall that a Comparator’s compare function "Returns
a negative integer, zero, or a positive integer as the first argument is less than, equal to, or
greater than the second."

public static void print(Station berkeley) {

PriorityQueue<Station> pq = new PriorityQueue<>(

);

pq.add(berkeley);

while () {

Station curr = pq.remove();

System.out.print(curr.name + " ");

pq.addAll(); // pass in a List

}

}

(b) The use of a lambda statement as the Comparator is a syntactical shortcut. Implement the
following StationComparator which could be used instead.

import java.util.Comparator;

class StationComparator implements Comparator {

@Override

public compare() {

}

}

Demonstrate how the StationComparator would be used in this line from the print function
in place of the lambda that we used previously.

PriorityQueue<Station> pq = new PriorityQueue<>(

);

6

Name:

(c) What happens if the @Override line is deleted from above the StationComparator’s compare

function, assuming that all of the blanks are filled in with the correct solution?
(Choose one answer.)

Compiler Error
Runtime Error
Unexpected Behavior
No Difference

(d) Another way to solve this problem is to use a BFS-inspired approach. But before we fully
implement that in part e, let’s first remind ourselves of the standard BFS procedure.

Run BFS (Breadth First Search) as you learned in lab on the example tree from before (repro-
duced below), starting with the berkeley station. When inserting multiple children into the
fringe, insert in order from lowest to highest travel time.

BFS Traversal (one station name per line):

In general, this doesn’t always work in helping us print the station names in order of travel
time, so your answer here may or may not match the example’s expected output.

7

CS 61BL Midterm 2, Summer 2019

(e) A little trick resolves the problem we have with ordinary BFS: use dummy nodes such that
the travelTime difference between any two consecutive nodes (whether a real Station or just
a dummy node) is 1. For example, as shown below, since sanbruno has a child sfo that is 3
more away from it than its own travelTime of 122, we use two dummy nodes between them.

Implement print2 to do the same thing as print but using this BFS approach instead. For
your fringe, we will use a LinkedList, which can behave as either a stack or queue, depending
on your usage of its addFirst, addLast, removeFirst, removeLast methods.

public static void print2(Station berkeley) {

LinkedList<Station> fringe = new LinkedList<>();

fringe.add(berkeley);

while () {

Station curr =

if () {

System.out.print(curr.name + " ");

}

for () {

if () {

Station dummy = new Station(null,);

} else {

}

}

}

}

8

Name:

(f) Answer the following runtime questions in terms of the following variables:

• N, the number of official Stations (not including dummy nodes).
• M, the number of nodes in the tree, including both dummy nodes and official Station nodes.

Make sure to use the correct asymptotic bound notations (O, Ω, Θ) and to write them clearly
(if you mean to write O, do not put a little loop at the top, because it may be interpreted as a
Θ). Simplify your answers.

What is the runtime of the priority queue printing algorithm (print from part a), in terms of N?

What is the runtime of the BFS printing algorithm (print2 from part e), in terms of M?

4. (0 pts) PNH

Name the type of bi-directional text in which alternating lines are read in opposite directions, similar
to the direction an ox takes whilst plowing a field.

9

CS 61BL Midterm 2, Summer 2019

5. (6 pts) Lost and Found

A Lost and Found is a place where lost items are turned in and where people looking for their lost
items can check to see if they’ve been found.

We are managing a Lost and Found, and we decided to use a HashMap<Ticket, Object> to store
people’s lost belongings. When someone finds a lost item and brings it to us, we create a Ticket,
and store it and the item in the map. When someone asks us to look for an item they had lost, we
make a new Ticket and use that to query our map. Since our lost and found just opened, the map
is initially empty.

(a) To be able to use Ticket instances as keys in our map, we need to implement the equals

method. Two Tickets should be considered the same if the location Strings spell out the same
word, and if the provided function says the descriptions are similar enough.

public class Ticket {

String location;

String description;

public boolean equals(Object o) {

if (!(o instanceof Ticket)) {

return ;

}

Ticket t = ;

// The next two blanks are for one long statement.

}

// Returns true if the two argument strings are "similar enough".

private static boolean isSimilar(String d1, String d2) {

// Implementation not shown.

}

public int hashCode() {

return location.hashCode() + description.hashCode();

}

}

10

Name:

(b) In one situation, a Phone was turned in to us. A Ticket t1 was made for it and this pair was
put into the map. When the owner came for it, a Ticket t2 was made, and the Phone was
successfully retrieved from the map using t2.

In another situation, a Charger was turned in to us. A Ticket t3 was made for it and this
pair was put into the map. After that, we found out that the Charger was actually found in
a different location, and so we updated t3 using a reference we still had to it (i.e. we used a
line like t3.location = ...). When it was to be retrieved, a Ticket t4 was made. t4 should
have matched the updated t3, but the map strangely returned null rather than the Charger

as desired.

Why? Write no more than 25 words explaining this. Take note of the hashcode function from
the Ticket class from part a.

(c) Subsequent to the events from the previous part, one thousand Shirts were turned in to us,
and so we made a Ticket for each Shirt, and put them all into the map. After that, we again
tried looking for t3 using t4, and miraculously the Charger is successfully retrieved this time.

Why? Write no more than 25 words explaining this.

11

CS 61BL Midterm 2, Summer 2019

6. (6 pts) Game Trees

(a) Given the following mimimax tree, put an X on the branches that would be pruned using
alpha-beta pruning, and fill in each node with the value that it will return. The values in the
nodes should account for alpha-beta pruning (i.e. do not write in a value that will never be seen).

The upward triangles represent maximizers and the downward triangles represent minimizers.

5 10 3 15 8 6 9 10 6 5 0 -5 -9 14

12

Name:

(b) In the tree below, again the downward triangles represent minimizers and the upward triangles
represent maximizers. The provided values shown on the non-leaf nodes are the values with
alpha-beta pruning already performed. The branches with X’s through them represent branches
that have been pruned.

For each leaf node that is labeled with a letter, of the value options listed, mark all values for
which it can be, given all of the provided values and also the branches that are pruned. You
may make notes on this tree diagram, but it will not be graded.

6

A 9 B 2

×

6

C 6 D 8

×
4

E 5 F 10

×

(a) Mark the checkbox next to all of the values that Node A can be.
2 2 2 4 2 6 2 8 2 10

(b) Mark the checkbox next to all of the values that Node B can be.
2 2 2 4 2 6 2 8 2 10

(c) Mark the checkbox next to all of the values that Node C can be.
2 2 2 4 2 6 2 8 2 10

(d) Mark the checkbox next to all of the values that Node D can be.
2 2 2 4 2 6 2 8 2 10

(e) Mark the checkbox next to all of the values that Node E can be.
2 2 2 4 2 6 2 8 2 10

(f) Mark the checkbox next to all of the values that Node F can be.
2 2 2 4 2 6 2 8 2 10

13

CS 61BL Midterm 2, Summer 2019

7. (9 pts) Decision Tree

Here you will implement a tree structure that is commonly used in machine learning since it naturally

resembles an easy to interpret flow-chart. The non-leaf attributes and split values are hard-coded

here, but typically these would be learned from training data.

Assume the standard java.util.HashMap is imported everywhere as needed in this question.

(a) Every day when lunchtime rolls around, Christine, Matt, and Jackson experience a different
craving, which can be described by several Attributes. In order for us to determine whether a
restaurant will satisfy our overall craving, we need to be able to compare individual Attributes
of our craving and the Attributes a restaurant can offer.

Fill in the blank below so that Attribute implements the Comparable interface.

public class Attribute implements Comparable<Attribute> {

public String name;

public int value;

public Attribute(String name, int value) {

this.name = name;

this.value = value;

}

/**

* Returns a negative integer, zero, or a positive integer as this Attribute

* is less than, equal to, or greater than the specified Attribute in value.

*

* Assumes that the Attributes have names that are .equals().

*/

@Override

public int compareTo(Attribute o) {

}

}

14

Name:

(b) We will use Attributes in two ways. First we will put together a HashMap<String, Attribute>

craving (passed in as the argument to the predict functions below, which you’ll be implement-
ing) that describes what we’re looking for in a satisfactory meal. The String key of the map is
the same as the name field of the corresponding Attribute values (for ease of use).

Secondly, we will be creating a binary tree out of non-leaf nodes (called Node, illustrated as
rectangles below), and each of these store a single Attribute instance. The name of the Node’s
Attribute attr will have the same name as one of the Attributes in craving, and we use its
value as the node’s "split value".

We will compare the Attributes in the craving to those in the Nodes of the tree. During a
call to its predict function, if said matching Attribute of the craving argument has a value

that is less than or equal to that of attr’s split value, we look at the left subtree to re-
cursively continue looking for our lunch destination. Otherwise, if the value is greater than

the split value, we look at the right subtree. When a leaf-node is reached (Leaf, illustrated
as ovals below), the restaurant field of that node indicates the prediction result to be returned.

Consider querying the example tree below with a craving consisting of the following:

• "expensiveness" to Attribute("expensiveness", 12).
• "distFromSodaHall" to Attribute("distFromSodaHall", 7).
• "vegetarianFriendliness" to Attribute("vegetarianFriendliness", 40).

A call of predict(craving) on the root node should return "akis". This is because the craving
has an "expensiveness" value of 12, which is greater than that of the root so we proceed to
root.right. There, we see that the craving has a "vegetarianFriendliness" value of 40,
which is less than or equal to 40, so we proceed left and return that Leaf’s restaurant.

continued on next page...

15

CS 61BL Midterm 2, Summer 2019

Fill in the blanks to complete the predict function implementations such that a provided
craving will find its way to the appropriate Leaf and return the restaurant it best describes.
You may not need all lines provided. No more than one statement per line.

public class Node {

public Node left, right;

public Attribute attr;

public Node(String name, int value) {

this.attr = new Attribute(name, value);

}

String predict(HashMap<String, Attribute> craving) {

int c =

if () {

} else {

}

}

}

public class Leaf extends Node {

public String restaurant;

public Leaf(String restaurant) {

super(null, -1);

this.restaurant = restaurant;

}

}

16

Name:

(c) Answer the following runtime questions in terms of the following variables:

• N, the number of Nodes in the binary decision tree.

Make sure to use the correct asymptotic bound notations (O, Ω, Θ) and to write them clearly
(if you mean to write O, do not put a little loop at the top, because it may be interpreted as a
Θ). Simplify your answers.

What is the best case runtime of calling predict on the root of the decision tree and making
recursive calls until we get a String answer? Note that the decision tree is not necessarily
balanced. Assume that deletions are never performed on our tree (if this fact is relevant to your
analysis).

The worst case?

17

