
UC Berkeley
CS 172: Computability and Complexity March 4, 2019

Midterm I

Instructions

1. Do not turn over this page until instructed to do so.

2. This exam contains 4 questions. Answer all of them. You have 75 minutes to do so.

3. Turn off your cellphone, smartwatch and any other electronics, and place them in your bag.
Then, place your bag at the front of the classroom for the duration of the exam.

4. During the exam, you should have your Cal1 card or government-issued ID with you. It will
be required when submitting the exam.

5. Before you start writing your answers, write you student ID number at the top-right corner
of each page of the exam.

6. Write your answers to each question in the space provided directly after the question, using
a black or blue pen with non-erasable ink. If you run out of space you may continue your
answer on the scratch paper provided at the end. In that case, clearly indicate where each
answer starts and ends within the scratch paper. Clearly cross out any drafts or scribbles that
should not be graded.

7. In your answers, you may rely on any claim proved in the lectures or discussions if you provide
a full and clear statement of the cited claim. For all other claims you make, you must provide
a full proof, including for claims we saw in the homework.

8. You must work alone, without consulting any people or other sources.

Write your full legal name and student ID here to indicate that you understand the instructions:

First name:

Last name:

Student ID:
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Problem 1

Define the following two notions:

(a) Non-deterministic finite automaton (NFA). (5 pts)

An NFA N consists of:

– A finite set of states Q.

– A finite alphabet Σ such that ε ∈ Σ.

– A transition function δ : Q× Σ→ 2Q.

– An initial state q0 ∈ Q.

– A set of accepting states A ⊆ Q.

(b) The NFA N accepts the input x ∈ {0, 1}∗. (5 pts)

Solution 1:

An NFA N accepts an input x ∈ {0, 1}∗ if there exists a sequence q0, q1, q2, . . . , qn ∈ Q such
that:

– q0 is the initial state of N .

– For all 1 ≤ t ≤ n, we have qt ∈ E(δ(qt−1, xt)), where for S ⊆ Q, the set E(S) is the set of
states that can be reached from S using ε-transitions.

– qn ∈ A.

Solution 2:

Let N = (Q,Σ, δ, q0, A) be a NFA and let x ∈ {0, 1}∗. We say that N accepts x if there exist a
sequence s1, s2, . . . , sn ∈ {0, 1, ε}∗ where s = s1s2 . . . sn and a sequence of states r0, . . . rn ∈ Q such
that:

• r0 = q0.

• ∀i ∈ [n] : ri ∈ δ(ri−1, si).

• rn ∈ A.
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Problem 2

Let L ⊆ {0, 1}∗ be an infinite regular language.

(a) Prove that there are two disjoint infinite regular languages L1, L2 ⊆ {0, 1}∗ such that L = L1∪L2.
(20 pts)

Since L is regular it has a pumping constant p. Since L is infinite, it contains some string s of
length at least p. By the pumping lemma, we may partition that string such that s = xyz with
|y| > 0, and xyiz ∈ L for all integers i ≥ 0. The language L1 = {xy2iz : i ≥ 0} is in L. The
language L1 is regular, seeing as it can be expresses using the regular expression x(yy)∗z. The
language L1 = {0, 1}∗ \ L1 is regular, from the closure of regular language under complementation.
The language L2 = L∩L1 = L\L1 is also regular, from closure under intersection. It is also infinite,
seeing as it contains all strings of the form xy2i+1z for i ≥ 0.

(b) Prove that there is a language L′ ⊆ L such that L′ is not regular. (10 pts)

Suggestion: Show that there exists a sequence of strings si ∈ L such that |si+1| ≥ |si|2 for all i. Now
recall the Polynomials question from Problem Set 2.

Solution 1:

Define i1, i2, . . . inductively as follows. Let i1 be the smallest integers such that L ∩ Σi1 is non
empty and i1 ≥ 2; such an integer exists since L is non empty. Given ij , let ij+1 be the smallest
integer that is larger than i2j such that L ∩ Σij+1 is non empty; such an integer exists since L is
infinite.

For each j, choose sj ∈ Σij ∩ L; such sj exists by construction of ij .

Let L′ = {s1, s2, . . .}. This is an infinite set such that |sj+1| ≥ |sj |2 for all integers j ≥ 1. Assume
towards a contradiction that L′ is regular. By the pumping lemma, we can choose a string sj =
xyz ∈ L′, |sj | > 3 such that such that xyjz ∈ L′ for all integers j ≥ 0, and |y| > 0. Observe
that

|sj | = |xyz| < |xy2z| = |sj |+ |y| ≤ 2|sj | < |sj |2 ≤ |sj+1|,

by the construction of L′ it holds that xy2z /∈ L′. This is a contradiction.

Solution 2:

We already saw that there is a string xyz ∈ L such that xyiz ∈ L for all integers i ≥ 0. The language
L′ = {xyi2z : i ≥ 0} is contained in L. Assume towards a contradiction that L′ is regular. By the

pumping lemma, there is a string x′y′z′ ∈ L′ such that x′y′
j
z′ ∈ L′ for all integer j ≥ 0. The length

of the strings of the form x′y′
j
z′ grows linearly in j, so it can not be in L′ for all j′, because the

length of the strings in L′ grows quadratically.

Remark: the language L cannot be assumed to be all of {0, 1}∗.
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Problem 3

Let n > 0 be an integer, and recall that ◦ denotes concatenation. For a string x = x1 ◦x2 ∈ {0, 1}2n
where x1, x2 ∈ {0, 1}n, let

swap(x) = x2 ◦ x1.

Example: For n = 3, swap(011001) = 001011.

Consider the language
SWAP =

{
x ∈ {0, 1}2n : x = swap(x)

}
.

What is the minimal size for a DFA that decides SWAP? Prove your answer. (30 pts)

We use the Myhill-Nerode theorem. Let ≈ denote the equivalence relation on string in {0, 1}∗ that
SWAP defines. That is, x ≈ y if for all z ∈ {0, 1}∗, the string x ◦ z is in SWAP if and only if the
string y ◦ z is in SWAP.

We say that x ∈ {0, 1}∗ can be extended to be in SWAP if there exists a z ∈ {0, 1}∗ such that
x ◦ z ∈ SWAP. First, we claim that if x, y ∈ {0, 1}∗ can be extended to be in SWAP and |x| 6= |y|
then x 6≈ y. Indeed, there exists a z such that x ◦ z ∈ SWAP, but y ◦ z does not have length 2n, so
it is not in SWAP.

We see that the equivalence classes {0, 1}∗/ ≈ that contain inputs that can be extended to be in
SWAP can be partitioned according to length. Let Em be the collection of equivalence classes with
accepting inputs of length m.

For m ≤ n, we claim that |Em| = 2m. Indeed, if x, y ∈ {0, 1}m are distinct then x0n−mx0n−m ∈
SWAP but y0n−mx0n−m 6∈ SWAP.

For n < m ≤ 2n, we claim that |Em| = 22n−m. First, for every x ∈ {0, 1}m that can be extended
to be in SWAP, there is exactly one zx such that x ◦ zx ∈ SWAP. Thus, x, y ∈ {0, 1}m that can be
extended to be in SWAP are in the same equivalence class if and only if zx = zy. Furthermore, for
each suffix z of length 2n −m there exists a unique equivalence class for which z is the accepting
suffix. The number of different equivalence classes is thus 22n−m, which is the number of options to
choose such a suffix z of length 2n−m.

There is one additional equivalence class that contains all strings that cannot be extended to be
in SWAP. They are all equivalent because no suffix can complete any of them to a string in the
language.

The number of different equivalence classes is therefore

n∑
m=0

2m +

2n∑
m=n+1

22n−m + 1 = 2n+1 − 1 + 2n − 1 + 1 = 3 · 2n − 1.

By the theorem, this is the size of the language, i.e. the size of a minimal DFA that decides it. �

Note: In the above proof we showed that the number of equivalence classes is precisely 3 ·2n−1. We
did this by presenting a set of equivalence classes and showing that all strings in {0, 1}∗ belong to one
of the classes we presented. Many students proved that some set contains pairwise distinguishable
strings, but this only establishes a lower bound. Such a lower bound may not be tight because it
is possible that some larger set exists that would also be pairwise distinguishable, entailing a larger
lower bound.

The lower bound was worth 20 points, and the upper bound was worth 10.

One common answer, which only proved a (not-tight) lower bound of 2n without establishing an
upper bound, generally received 15 points.
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Problem 4

A bipartite graph G = (V,E) is a graph in which V can be partitioned into two disjoint sets V1 and
V2 such that all edges e ∈ E are of the form e = {v1, v2} with v1 ∈ V1 and v2 ∈ V2.

Fix an even integer n > 2. Let V = {1, 2, . . . , n}. Let Σ be the family of all sets e ⊂ V of size
|e| = 2. Every string S = (e1, e2, . . . , em) ∈ Σm defines a graph (V,E) with vertex-set V and edge-
set E = {e1, e2, . . . , em}. Let Bipartite be the streaming problem of deciding whether the graph
defined by a string S ∈ Σm is bipartite.

(a) Define: Two strings S1, S2 ∈ Σ∗ are distinguishable with respect to Bipartite. (5 pts)

Two strings S1, S2 ∈ Σ∗ are distinguishable with respect to Bipartite if there is a sting z ∈ Σ∗ such
that S1 ◦ z ∈ Bipartite and S2 ◦ z 6∈ Bipartite, or vice versa. (The additional requirement that the
strings be of the same length is good, but no points were reduced if it was omitted)

(b) Prove that there are strings S1, . . . , St ∈ Σ∗ for t ≥
(

n
n/2

)
/2 that are pairwise distinguishable

with respect to Bipartite. (25 pts)

For every U ⊂ V of size |U | = n/2 such that 1 ∈ U , define SU as a string of length n2/4 that encodes
the complete bipartite graph GU with sides U and V \ U . The number of such strings is exactly(

n
n/2

)
/2. First, every two such strings encode different graphs (we can reconstruct the set U from

the graph GU ). Second, every graph GU is maximal in the sense that adding a single edge to GU

makes it non-bipartite. It follows that if U 6= U ′ are two sets as above, then there is an edge e that
is in GU but not in GU ′ . It follows that SU ◦SU is in Bipartite but SU ◦SU ′ is not in Bipartite.
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