
Optional. Mark along the line to show your feelings Before exam: [____________________☺].
on the spectrum between and ☺. After exam: [____________________☺].

UC Berkeley – Computer Science
CS61B: Data Structures

Final Exam, Spring 2017.

This test has 13 questions worth a total of 200 points, and is to be completed in 165 minutes. The exam is closed

book, except that you are allowed to use three double sided written cheat sheets (front and back). No calculators

or other electronic devices are permitted. Give your answers and show your work in the space provided. Write

the statement out below in the blank provided and sign. You may do this before the exam begins.

“I have neither given nor received any assistance in the taking of this exam.”

These solutions are probably in good shape, but there are lots of tricky/subtle problems on the exam so it's

it’s possible there are still errors. Last updated: 11:38 PM 5/6/2019

Signature: EGG

Points # Points

0 0.5 7 23

1 12 8 0

2 28 9 16

3 14 10 16

4 12 11 12

5 16 12 12

6 12 13 26.5

TOTAL 200

Name: _Egg_____________________

SID: __6_______________________

Three-letter Login ID: __ege___

Left SID: ___N/A________________

My left neighbor has ID: __N/A__

Right SID: ___N/A_______________

My right neighbor has ID: _ N/A_

Exam Room: ___N/A_______________

Tips:

• There may be partial credit for incomplete answers. Write as much of the solution as you can, but we

may deduct points if your answers are more complicated than necessary.

• There are a lot of problems on this exam. Work through the ones with which you are comfortable

first. Do not get overly captivated by interesting design issues or complex corner cases you’re not

sure about.

• Not all information provided in a problem may be useful.

• See the coding reference sheet on the last page for potentially useful data structures.

• Unless otherwise stated, all given code on this exam should compile. All code has been compiled and

executed before printing, but in the unlikely event that we do happen to catch any bugs in the exam,

we’ll announce a fix. Unless we specifically give you the option, the correct answer is not ‘does not

compile.’

• ○ indicates that only one circle should be filled in.

• □ indicates that more than one box may be filled in.

• For answers which involve filling in a ○ or □, please fill in the shape completely.

Video walkthrough: Nonexistent, sorry :(

 UC BERKELEY

Login: _ege____

 2

0. So it begins (0.5 points). Write your name and ID on the front page. Write the exam room. Check the IDs of

your neighbors. Write the given statement. Sign. Write your login in the corner of every page. Enjoy your free

0.5 points ☺.

1. Mystery Spanning Tree 3000 (12 points).

a) (4 pts) For the graph below, list the edges in the order they’re added to the MST by Kruskal’s and Prim’s

algorithm. Assume Prim’s algorithm starts from vertex A. Assume ties are broken in alphabetical order (i.e.

the edge 𝐴𝐵 would be considered before 𝐴𝐶). Denote each edge with alphabetical overbar notation 𝐴𝐵,

which represents the edge from A to B. You may not need all blanks. For your convenience, the graph is

printed twice (to make running algorithms easier).

Prim’s algorithm order: AB BC BE EF BG CD

Kruskal’s algorithm order: EF BC BE BG AB CD

b) (2 pts) Is there any vertex for which the shortest paths tree (SPT) is the same as your Prim MST above?

● Yes, and it’s ____B_____ (or A or the ‘hipster vertex’ G) ○ No

c) (6 pts) For the following propositions, fill in true or false completely and provide a brief explanation. For

a proposition that is false, a counter-example suffices. Assume all edge weights are unique.

● True / ○ False: Adding 1 to the smallest edge across any cut of a graph G must change the total weight of its

minimum spanning tree.

Since all edge weights are unique, either this smallest edge (now with weight +1) is included, or this smallest

edge is not included, and some larger edge takes its place. Either way, total weight increases.

○ True / ● False: The shortest path from vertex A to vertex B in a graph G is the same as the shortest path

from A to B using only edges in T, where T is the MST of G.

No, consider vertices C and E in the graph above.

● True / ○ False: Given any cut, the maximum-weight crossing edge is in the maximum spanning tree.

Yes. We can simply use the proof of the cut-property from class, but replacing “larger” with “smaller”.

CS61B FINAL, SPRING 2017

Login: _______

 3

That is: Suppose it were not. In that case, we could add it to the max spanning tree and a cycle would result. To

get rid of the cycle in the MaxST, we could remove the smallest edge in the cycle (which is by definition not the

maximum-weight crossing edge) and end up with a larger spanning tree.

2. Sorting (28 points).

a) (2 pts) How many inversions are in the list [A, D, B, W, K] assuming we want the list sorted alphabetically?

2 (D and B, W and K)

b) (3 pts) Suppose we want to sort the array [5, 6, 10, 17, 14, 12, 13] using in-place heapsort. Give the array

after heapification and a single remove-max operation.

[14, 10, 13, 6, 5, 12, 17]

UC BERKELEY

Login: _ege____

4

c) (14 pts) Suppose we have N items we want to sort. For each scenario below, pick the “best” sort to get them

into sorted order. Assume for all scenarios that N is very large. There may be multiple correct answers,

and the correct answer may even be ambiguous. Give the running time for the absolute worst case in the

right-most column as a function of N. Running time may not be the only consideration for “best”. In all

cases, assume we’re using Java.

Choose from among 1: Insertion sort, 2: Merge sort, 3: Quicksort (with Hoare partitioning), and 4: LSD

radix sort. You may not need to use all four answers. Assume that we want stability when potentially useful.

Give your answer to “Best Sort” as a number.

Below are listed our answers. We may give other answers credit than those listed below. People looking at

these solutions in future semesters: Argue with each other about why we picked our answers. Try to decide

if you can find other reasonable answers than the ones we listed and under what assumptions (the array of

10 strings is particularly interesting). Also, hello from May 2017! It feels so … now, right now, but I bet for

you it feels like the past, possibly a long time ago.

Scenario (i.e. What You’re Sorting) Best Sort Running Time

Array of N integers whose max value k is a constant. Do not

include k in your runtime.

4 O(N)

Array of N BigIntegers1 whose max value is N3. Assume

comparison takes log(N) time.

4 O(N Log N)

Array of N objects that implement Comparable, assuming

comparison takes constant time.

2 O(N Log N)

Doubly linked list of N objects that implement Comparable,

assuming constant time comparison and all variables public.

2 O(N Log N)

Array of 10 Strings of length W. Give runtime in terms of W. 1 O(W)

Array of N objects that implement Comparable with Θ(√𝑁)

inversions, assuming compare takes constant time.

1 O(N)

Array of N objects that implement Comparable with Θ(𝑁2)
inversions, assuming compare takes constant time.

2 O(N Log N)

d) (9 pts) We call a sort monotically improving if the number of inversions never increases as the sort is

executed. Which sorts from the list below are monotically improving? Assume that all sorts are as presented

during lecture on arrays. Assume insertion sort and selection sort are in-place. Assume heapsort is in-place

and that the array acts as a max heap. Assume that Quicksort is non-randomized, uses the leftmost item as

pivot, and uses the Hoare partitioning strategy (i.e. using “smaller than” and “bigger than” pointers) from

lecture.

■ Insertion sort ■ Selection sort □ Heapsort ■ Quicksort □ LSD Sort ■ MSD Sort

3. Traversals (14 points). Suppose we have an NAryIntTree, defined as shown below. Any node may have

any number of children. If a node is a leaf, children is null. Assume that children[i] is never null for

any i.

1 A BigInteger is an “immutable arbitrary precision integer.” It can represent any integer, not just those that fit into 32 bits.

CS61B FINAL, SPRING 2017

Login: _______

5

a) (6 pts) Fill in the printTreePostOrder method below, which prints the values of the tree in postorder,

with one val per line. Your solution must be recursive and take linear time in the number of nodes.

public class NAryIntTree {
 private Node root;
 public class Node {

public Node[] children;
public int val;

 }
 public void printTreePostOrder() {

printTreePostOrderHelper(root)
 }

 public void printTreePostOrderHelper(Node x) {

if (x.children != null) {

for (int i = 0; i < x.children.length; i += 1) {

printTreePostOrderHelper(x.children[i]);

}

}

System.out.println(val);

}
 /* ... */
}
b) (8 pts) Fill in the code below which prints out the values of the tree in level order with one val per line.

Your solution must be iterative and take linear time in the number of nodes for any tree.

 private void printTreeLevelOrder() { // is a method of NAryIntTree
Queue<Node> fringe = new Queue<>();
fringe.enqueue(root);
while (fringe.size() > 0) {

Node x = fringe.dequeue();
System.out.println(x.val);
if (x.children != null) {

for (int i = 0; i < x.children.length; i += 1) {
fringe.enqueue(x.children[i]);

}
}

}
}

UC BERKELEY

Login: _ege____

6

4. Algorithms and Data Structures (12 points).

a) (4 pts) In class we primarily considered two graph representations: the adjacency list and the adjacency

matrix. Antares suggests that we can improve the performance of Dijkstra’s algorithm with a third graph

representation he calls an “adjacency heap”. For each vertex v, v’s adjacency heap stores all of v’s

neighbors in a heap ordered by edge weight, so that the smallest edge adjacent to v is at the root of its heap.

Naturally, Antares stores these heaps as arrays. Antares reasons that by considering small edges first,

Dijkstra’s will be able to complete faster.

Will using an adjacency heap result in better, equivalent, or worse asymptotic runtime performance for

Dijkstra’s algorithm than using a regular adjacency list? Assume that we only care about worst case

asymptotic performance. Briefly justify your answer.

○Adjacency heap is better ● Performance is the same ○ Adjacency heap is worse

Justification: Vertices get dequeued in the same order, so only difference is the time to iterate through

adjacency heap vs. list. Iteration takes the same amount of time for both assuming Antares just iterates

through the array. Or even if he deletes from the PQ, the overall runtime is still the same (see partial credit

answer below).

Or for partial credit:

○Adjacency heap is better ○ Performance is the same ● Adjacency heap is worse

Justification: Vertices get dequeued in the same order, so only difference is the time to iterate through

adjacency heap vs. list. Since Antares wants to go through “small edges first”, perhaps this means that he

iterates through in decreasing order, which must takes D log D time, where D is the degree of the vertex. In

the worst case, the totality of these iterations costs E log V. This does not change the runtime of Dijkstra’s

algorithm asymptotically, so is not correct, but we gave partial credit for recognizing (as long as your

answer was very clear) that Antares’s idea was simply going to slow things down with no benefit

whatsoever.

b) (4 pts) Suppose Antares has conjured up the Gulgate Priority Queue (GPQ). Given a GPQ containing N

elements, the worst-case running time for insertion, deletion, and change-priority are given as follows:

Insertion: 𝛩(𝑁), Deletion: 𝛩(𝑁), Change-Priority: 𝛩(1).

Suppose we run the implementation of Dijkstra's algorithm provided in class (where every vertex is initially

inserted into the PQ with infinite priority) using a GPQ on a graph with V vertices and E edges. What is the

worst case runtime of Dijkstra’s? Give your answer in big O notation in terms of V and E. Assume that

E >> V (this means E is much greater than V).

Ops Runtime per op Total Runtime

Insertion O(V) O(V) O(V2)

Deletion O(V) O(V) O(V2)

Change Priority O(E) O(1) O(E)

CS61B FINAL, SPRING 2017

Login: _______

7

Runtime: O(E+V2), but since E is bounded above by V2, it’s fine to also say O(V2). Simplifications which

remove V2 log V are not correct, e.g. O(E log V) and O(E log E): Suppose we build graphs where E = V1.5. In

this case, E is certainly much larger than V as both grow very large, but the function E log V would grow more

slowly than V2 log V.

c) (4 pts) Suppose Antares has also created a Xelha Quick Union (XQU) to check if two vertices are

connected while running Kruskal’s. Given that there are N items in an XQU, the running time for XQU

operations is as follows: Constructor: 𝛩(𝑁), Union: 𝛩(𝑁 log 𝑁), Is-Connected: 𝛩(log 𝑁)

Suppose we run the implementation of Kruskal’s algorithm as presented in class using a XQU and a heap-

based priority queue. Recall that in our version of Kruskal’s from class, all edges are initially inserted into a

regular heap-based priority queue and removed one by one, and added to the MST so long as there are no

cycles. What is the worst case runtime of Kruskal’s algorithm? Give your answer in big O notation in

terms of V and E. Assume that E >> V.

Ops Runtime per op Total Runtime

insert into PQ O(E) O(log E) O(E log E)

remove from pQ O(E) O(log E) O(E log E)

union O(V) O(V log V) O(V2 log V)

isConnected O(E) O(log V) O(E log V)

constructor O(1) O(V) O(V)

Overall runtime is O(E log E + V2 log V + E log V + V). We can simplify with the following observations:

• Observation 1: Since E >> V, the V term is irrelevant.

• Observation 2: E is O(V2) since at most every vertex is connected to every vertex.

• Observation 3 : Using observation 2, E log E is O(E log V2) which is O(2E log V) which is O(E log V).

Thus E log E and E log V are redundant.

Using observation 1 and 3, this means we can simplify to O(E log V + V2 log V), which can be simplified to

O(V2 log V) using observation 2 again, since E may grow more slowly than V2.

Simplifications which remove V2 log V are not correct, e.g. O(E log V) and O(E log E): Suppose we build

graphs where E = V1.5. In this case, E is certainly much larger than V as both grow very large. However, the

function E log V would grow more slowly than V2 log V.

UC BERKELEY

Login: _ege____

8

5. Potpourri (16 points).

a) (6 pts) We learned in lecture and in lab that we can use an array to compactly store a min/max heap, with

formulas to calculate the parent, left child, and right child given a node. Now suppose we want to store a

ternary heap, where every node has 0, 1, 2, or 3 children. Would the compact array representation work? If

your answer is yes, give formulas on the left to calculate the parent, left child, middle child, and right child.

If your answer is no, explain why on the right.

Assuming root is at index: 0
public int parent(int k) { return (k-1)/3;}
public int left(int k) { return k*3+1;}
public int middle(int k) { return k*3+2;}
public int right(int k) { return k*3+3;}

Impossible, because:

Assuming root is at index: 1
public int parent(int k) { return Math.round(k/3);}
public int left(int k) { return k*3 - 1;}
public int middle(int k) { return k*3;}
public int right(int k) { return k*3 + 1;}

Impossible, because:

b) (2 pts) In class, we said that anytime you override equals, you must also override hashCode. Suppose the

Yarg class overrides the equals method, but does not override hashCode. Suppose that yargSet is a

HashSet<Yarg>. What are the potential direct consequences of not overriding hashCode?

● True / ○ False: yargSet.contains() may return an incorrect result.

○ True / ● False: yargSet.contains() runs a much higher risk of taking linear time.

c) (6 pts) If we wanted to build a generic TrieSet that could hold many different types, we’d need to require

all such types to implement some interface, much like items in a TreeSet must implement the

Comparable interface (shown below). Give a declaration of an appropriate interface and describe any

methods with comments. Provide useful names for your methods and interface (not silly ones, sorry). You

may not need all blanks.

public interface Comparable<Item> {
 // Returns negative int if this < x, positive if this > x, 0 if equal.
 int compareTo(Item x);
}
public interface HasDigits {

 /** Returns the ith digit. */
 public int digit(int i);
}

Other schemes for deconstructing an object into sub-pieces that are indexable could work as well. The digits

don’t necessarily need to be comparable to work for Trie construction. Alternate stranger possibilities like

prefix testing methods are also possible, though unwieldy.

CS61B FINAL, SPRING 2017

Login: _______

9

d) (2 pts) Suppose the creator of a new DogPicture class is deciding whether or not to implement interface

X, where X is the interface from part c. What is the primary consideration of the creator? “Will somebody

ever want to build a Trie of DogPictures” is not enough of an answer.

For me the best answer is “Will anyone want to do prefix operations with DogPictures”, but other answers are

possible.

UC BERKELEY

Login: _ege____

10

6. Stocks (12 pts). Define the price of a stock as the price of its most recent trade. Suppose we want to track the

highest priced stocks at the end of the day using the code below. Assume the MaxPQ is heap based and uses the

same approach as detailed in lecture (where insertion and deletion operations take worst case logarithmic time).

Assume all stock names are unique. Assume STOCK_LIST is a list of Stock objects with prices equal to

yesterday’s final price. A stock may be traded multiple times in one day.

public static List<Stock> getMostExpensiveStocks(int k) {
MaxPQ<Stock> rankedStocks = new MaxPQ<>();
HashMap<String, Stock> nameToStock = new HashMap<>();
addAllStocks(STOCK_LIST, nameToStock); //assume nice hashcode spread
addAllStocks(STOCK_LIST, rankedStocks); //uses bottom up heapification
while (marketIsStillOpenToday()) { //market closes at 5 PM
 Trade t = getNextTrade(); //waits if no trade available
 Stock s = nameToStock.get(t.name); //assume key always in map

s.price = t.price; //may be higher or lower
}
ArrayList<Stock> returnStocks = new ArrayList<Stock>();
for (int i = 0; i < k; i += 1) { //assume k <= s

returnStocks.add(rankedStocks.delMax());
}
return returnStocks;

}

Where the compareTo method of Stock is defined as public double compareTo(Stock s) { return
this.price - s.price; } where price is an integer.

a) Which of the correctness or compilation issues listed below are present in this code? Check all that apply. If

you believe there are compilation errors, consider the other boxes assuming the compilation errors are fixed.

Assume k is smaller than the number of stocks.

□Compilation: The method is supposed to return a List, but returns an ArrayList.

□Compilation: The HashMap cannot point to items inside of the MaxPQ because the MaxPQ’s instance

variables are private.

□Correctness: The algorithm actually returns the k cheapest stocks.

□Correctness: The algorithm may return a list with duplicates if the same stock is traded multiple times.

■Other (explain): Mutating objects in a heap is very bad and can yield the wrong answer OR compareTo

returns a double, not an int (this second answer wasn’t intended, but if you spotted it, cool).

b) What is the worst case runtime and space complexity of the code above, assuming we fix only any

compilation errors you identified in part a? Give your answer in O notation. Your bounds should be as tight as

possible with no unnecessary lower order terms or constant factors. Give your answers in terms of S, T, and k,

where S is the number of stocks, T is the number of trades, and k is the given argument.

Runtime complexity: O(S + T + k log S) or O(S2 + ST) if we take into account the fact that hashing COULD

be bad.

Space (a.k.a. memory) complexity: O(S)

CS61B FINAL, SPRING 2017

Login: _______

11

7. Arithmetic Tree (23 pts). An arithmetic tree is a tree that stores an arithmetic expression. For this problem,

assume all nodes are either multiplication (represented with ⨉), addition (represented with +), or a number

(represented as a written integer). For example, the following tree represents (1 ⨉ 5 ⨉ (2 +

2)) + (3 + -1) + (3 ⨉ -5 ⨉ 1), which would evaluate to 7.

Your job is to fill out the code below such that evaluateTree(Node tree) evaluates the arithmetic tree

rooted at tree to its correct value. For example, if evaluateTree were applied to the ⨉ node at the top left of

the figure above, it would return 20. Multiplication and addition operator nodes can have any number of

children. You do not need to check for bad inputs (e.g. null children). You may find it easier to work your way

from the end of the problem back to the front. You may not need all blanks.

public abstract class Node {
 public List<Node> children;
 public abstract void processNode(Stack<Integer> stk);
}

public class ArithmeticTreeEvaluator {
 public static int evaluateTree(Node tree) {

Stack<Integer> stk = new Stack<>();
evaluateTreeHelper(tree, stk);

 return stk.pop();
 }

 private static void evaluateTreeHelper(Node tree, Stack<Integer> stk) {
 for (Node c : tree.children) {

evaluateTreeHelper(c, stk);
}
tree.processNode(stk);

 }
}

If you’re stuck on this problem, come back later!

UC BERKELEY

Login: _ege____

12

public abstract class OperatorNode extends Node {
 public int numArgs() { /* Returns number of args for this node. */ }
 public abstract int apply(int arg1, int arg2);
 public void processNode(Stack<Integer> stk) {

int res = stk.pop();
for(int i = 1; i < numArgs(); i += 1) {

res = apply(res, stk.pop());
}

stk.push(res);
 }
}

public class ArgNode extends Node {
 public int value;
 @Override
 public void processNode(Stack<Integer> stk) {

 stk.push(value);
 }
}

/* Don't overthink this! */
public class MultiplicationNode extends OperatorNode {
 @Override
 public int apply(int arg1, int arg2) {

 return arg1 * arg2;
 }
}

public class AdditionNode extends OperatorNode {
 @Override
 public int apply(int arg1, int arg2) {

return arg1 + arg2;
 }
}

8. PNH (0 points). This United States President won office with the smallest fraction of the popular vote in the

history of United States presidential elections.

John Quincy Adams, who only got 30.9% of the popular vote in 1824 and didn’t even get the majority of the

electoral college. Instead, the House of Representative picked him. Dang, can you imagine?

CS61B FINAL, SPRING 2017

Login: _______

13

9. Asymptotics (16 points). For each of the code snippets below, give the best and worst case runtimes in

terms of N. Give the best runtimes in the column to the left, and the worst in the column to the right.

Best:

𝛩(𝑁2)
Worst:

𝛩(𝑁2)
public static void f1(int N) {
 if (N == 0) { return; }
 f1(N / 2);
 f1(N / 2);
 g(N); // runs in Θ(N2) time
 }

𝛩(1) 𝛩(𝑁) public static int f2(String[] x, int i) {
 int N = x.length;
 int total = 0;
 try {

while (i < N) {
total += x[i].length();
i += 1;

}
 } catch(NullPointerException e) {

x[i] = "null";
total += f2(x, i);

 }
 return total;
}

𝛩(𝑁) 𝛩(𝑁) Assume t is a binary IntTree with N nodes:

public static void f3(IntTree t) {
t.value = t.value * 2;

 if (t.left != null) { f3(t.left); }
 if (t.right != null) { f3(t.right); }
}

𝛩(1) 𝛩(2𝑁) Assume t is a binary IntTree with N nodes:

public static void f4(IntTree t) {
t.value = t.value * 2;

 if (t.left != null) { f4(t.left); }
t.right = t.left;
if (t.right != null) { f4(t.right); }
t.left = t.right;

}

 UC BERKELEY

Login: _ege____

 14

10. Return of the XelhaTree (16 points). Write a function validXelhaTree which takes an IntTree and a

List and returns true if the IntTree is a XelhaTree for the list. You may not need all lines. A XelhaTree is

valid if it obeys the min heap property, and if an in-order traversal of the XelhaTree yields the list of items

passed to createXelhaTree (in the same order). One line if statements with {} on the same line are fine. You

may not need all the blanks. Assume there are no duplicates.

public class XelhaTreeTest {
 public static class IntTree {
 public int item;
 public IntTree left, right;
 }
 public static IntTree createXelhaTree(List<Integer> x) { ... }
 /** If x is null, returns largest possible integer 2147483647 */
 private static int getItem(IntTree x) {
 if (x == null) { return Integer.MAX_VALUE; }
 return x.item;
 }
 public static boolean isAHeap(IntTree xt) {

 if (xt == null) { return true; }

 if (xt.item > getItem(xt.left)) { return false; }

 if (xt.item > getItem(xt.right)) { return false; }

 return isAHeap(xt.left) && isAHeap(xt.right);

 }

 public static void getTreeValues(IntTree xt, List<Integer> treeValues){

 if (xt == null) { return; }

 getTreeValues(xt.left, treeValues);

 treeValues.add(xt.item);

 getTreeValues(xt.right, treeValues); }

 }

 public static boolean validXelhaTree(IntTree xt, List<Integer> vals) {

 List<Integer> treeValues = new ArrayList<Integer>();

 /* getTreeValues adds all values in xt to treeValues */

 getTreeValues(xt, treeValues);

 return isAHeap(xt) && treeValues.equals(vals); }

CS61B FINAL, SPRING 2017

Login: _______

 15

11. MaxPQ (12 points). Complete the implementation of MaxPQ using data structures from the reference sheet

on the last page of the exam. You may not need all blanks. Write at most one statement per line.

public class MaxPQ<Item extends Comparable<Item>> {

 private MinPQ<Item> pq;

 public MaxPQ() {

 pq = new MinPQ<Item>(new ReverseComparator());

 __

 }

 public class ReverseComparator implements Comparator<Item> {
 public int compare(Item i1, Item i2) {
 return i2.compareTo(i1);
 // note: -i1.compareTo(i2) fails if compare returns
 // Integer.MIN_VALUE
 }
 }

 public Item delMax() {

 return pq.delMin();

 }

 public void insert(Item x) {

 pq.insert(x);
 }

}

Welcome to the Chill Out Zone. [a cool place for friends!!!!]

UC BERKELEY

Login: _ege____

16

12. Danger and Optimization (12 points).

a) (5 pts) Suppose you provide a computing service where users can upload lists of integers and receive back

the numbers in sorted order. Which sorts below would be appropriate to choose for this task, assuming you

want to prevent users from submitting inputs that either result in terrible2 runtime or cause an exception?

Assume you are using Java.

● Appropriate / ○ Inappropriate : Merge Sort

○ Appropriate / ● Inappropriate : Insertion Sort – Can be N2!

● Appropriate / ○ Inappropriate : Quicksort using Hoare partitioning and that starts by shuffling

we're using Java integers, LSD sort is fine since items are of a
short maximum width.

given that we're using Java integers, LSD sort is fine
since items are of a short maximum width.

Note: Quicksort can also be N2, but probability is effectively zero, and no input the user provides has any

chance of causing slow runtime. It’s literally not a thing worth worrying about unless you are worried about

asteroids killing you on the way to school.

b) (5 pts) Suppose you provide a service where users can upload a list of names (stored as Java Strings) and it

will return the list of all unique Strings. Which set implementations below would be appropriate to choose

for this task, assuming you want to prevent users from submitting inputs that either result in terrible runtime

or cause an exception?

● Appropriate / ○ Inappropriate : 2-3 Tree based Set

● Appropriate / ○ Inappropriate : LLRB based Set

○ Appropriate / ● Inappropriate : Hash based Set – Someone trying to embarrass you could

precalculate a bunch of Strings with same

hashCode and submit them to your service.

● Appropriate / ● Inappropriate : Trie based Set – This really depends on your Trie implementation. If you’re

using an array of links like in the optional textbook, then

you’re going to use all your memory and get

 OutOfMemory errors. If you’re using a HashMap or

TreeMap for links, things will be slower and safer,

though probably appropriate (but honestly it’s a pretty

tough analysis).

○ Appropriate / ● Inappropriate : TST based Set – If you’re using something like 16 bit Unicode (as in Java),

someone can insert a sequence of strings so that insertions

into the TST take 216 times as long as is necessary.

c) (2 pts) Suppose you provide a service where users can upload their own custom graphs and a start vertex,

and you will find the list of all vertices reachable from the start. Which graph search algorithms would be

2 By terrible we mean: Imagine you are demoing your website and want to impress someone with its speed. Does it run so slow that

you are embarrassed? If so, that is terrible.

● Appropriate / ○ Inappropriate : LSD – An earlier version of this had LSD as inappropriate, but given that

● Appropriate / ○ Inappropriate : Recursive MSD – An earlier version of this had LSD as inappropriate, but

CS61B FINAL, SPRING 2017

Login: _______

17

appropriate to choose for this task, assuming you want to prevent users from submitting inputs that either

result in terrible runtime or cause an exception?

○ Appropriate / ● Inappropriate : Recursive DFS – Spindly graphs can cause stack overflow exception

● Appropriate / ○ Inappropriate : BFS

d) (0 pts) What should Josh name his future kid (assume female if you want a gender specific name)?

Two popular answers were “Joshina” (or similar) and anything starting with a T. Actually, my dad’s work email

was thug@...

UC BERKELEY

Login: _ege____

18

13. Reductions (26.5 points). Often in computer science, problems are just other problems in disguise.

Complete each problem below according to the directions given. Many of these problems are very challenging.

a) (3 pts) Describe an algorithm to find a maximum spanning tree. Your algorithm must use Kruskal's as a

"black box," that is, without any modifications. Your answer should be brief.

Build a copy of the graph with every edge weight negated. Run Kruskal’s.

b) (5 pts) Suppose you want to find the SPT of a graph, but where you redefine the total cost of a path as

follows. Let cost(List<Edge>) be the sum of the weights of the edges, plus the number of edges. In

other words, we want to run Dijkstra’s taking into account not just the weights of the edges, but also the

number of edges. Describe an algorithm to find this shortest paths tree. Your algorithm must use Dijkstra’s

as a “black box”. Your answer should be brief.

Build a new copy of the graph with +1 added to every edge. Run Dijkstra’s.

c) (5 pts) Dijkstra’s algorithm sometimes fails on graphs with negative edges. Suppose we have a graph G with

a single negative edge with weight -Q, and we want to find the shortest path. Suppose we construct a new

graph G’ where every edge has Q added to its weight. If we run Dijkstra’s on G’, is the resulting shortest

paths tree always a correct shortest paths tree for G? If yes, explain why. If no, provide a counter-example.

○ Yes, because: ● No, counter-example:

SPT with B as source is not correct if we add 10 to every edge (in the new graph

G, it’ll prefer the path from B to D directly, but that’s not actually the shortest path

in the original graph from B to D)

CS61B FINAL, SPRING 2017

Login: _______

19

d) (6 pts) Suppose that we’re using a programming language Zulg where instead of comparison we have a

zelch operation. Suppose that we prove that “puppy, cat, dog”3 requires 𝛺(𝑁 log log 𝑁) zelch operations.

Assume that zelch takes constant time. For each of the following statements, determine whether the answer

is false, true, or the answer depends on whether P = NP.

We’re now at the really hard part of the test! Note: P=NP was an “extra” topic, but even if you don’t know what

it is, it was irrelevant to this problem.

● True / ○ False / ○ P=NP?: A zelch based sort requires at least 𝛺(𝑁 log log 𝑁) zelch operations.

Yes, same exact argument as in class about comparison based sorting lower bound.

○ True / ● False / ○ P=NP?: Sorting an array in Zulg requires 𝛩(𝑁 log log 𝑁) time in the worst case.

No, it might still be possible to do radix sort in Zulg even without comparison.

○ True / ● False / ○ P=NP?: The optimal sorting algorithm in Zulg requires 𝑂(𝑁 log log 𝑁) time in

 the worst case.

Just because we made a lower bound for the number of zelch operations doesn’t mean an algorithm that meets

the bound necessarily exists. For example, we can prove that 3SUM requires 𝛺(𝑁) array access in Java, but that

doesn’t mean that the optimal 3SUM algorithm is O(N) in the worst case!

○ True / ● False / ○ P=NP?: All sorting algorithms in Zulg require 𝑂(𝑁 log log 𝑁) time in the worst

 case.

We don’t even know if the optimal sorting algorithm is O(N log log N) so we certainly can’t say the same about

all sorting algorithms. For example, we might be able to write Bogosort in Zulg and it’s certainly not O(N log

log N) in the worst case.

3 Recall that “puppy, cat, dog” is a game from lecture where we have N boxes, each containing a unique object (e.g. a puppy, a cat,

and a dog) of known size, and our job is to determine which box contains which object.

UC BERKELEY

Login: _ege____

20

e) (6 pts) Suppose we have the abstract data type MinimumPQ, defined as an interface in Java as shown below:

public interface MinimumPQ<Item extends<Comparable<Item>> {
public void add(Item x);
public Item removeMin();
public Item min();

}

For each statement below, state whether it is true, false, or “depends on whether P = NP”. Assume that all

implementations are correct.

● True / ○ False / ○ P=NP?: There exists a possible MinPQ implementation for which add requires

 𝛩(log log 𝑁) time in the worst case.

Trivial, just stick the item at the front and then do dummy operation that takes log log N time.

● True / ○ False / ○ P=NP?: There exists a possible MinPQ implementation for which removeMin

 requires 𝛩(log log 𝑁) time in the worst case.

Trivial, maintain ordered array (making insert slow), then removeMin grabs front item and does dummy

operation that takes log log N time.

○ True / ● False / ○ P=NP?: There exists a possible MinPQ implementation for which add and

 removeMin require 𝛩(log log 𝑁) time in the worst case.

Any comparison based sort must take N log N time. If you can do both in log log N time, you are disobeying

sort lower bound, since you could use this magical MinPQ to sort N items in N log log N time which is less than

N log N.

● True / ○ False / ○ P=NP?: There exists a possible MinPQ implementation for which add requires

 𝛩(1) time in the worst case. Same as above.

● True / ○ False / ○ P=NP?: There exists a possible MinPQ implementation for which removeMin

 requires 𝛩(1) time in the worst case. Same as above.

○ True / ● False / ○ P=NP?: There exists a possible MinPQ implementation for which add and

removeMin require 𝛩(1) time in the worst case. Same as above.

CS61B FINAL, SPRING 2017

Login: _______

21

f) (1.5 pts) Consider the LongestPath problem, i.e. given a graph, does there exist a path with total weight k

or greater? Suppose that we prove that LongestPath cracks 3SAT (i.e. 3SAT reduces to longest path). For

each of the following statements, determine whether the answer is false, true, or the answer depends on

whether P = NP. Let N be the number of edges.

Note: The definition of k is a bit ambiguous, but the intent of the question was clear, I hope. Sorry. These very

last 1.5 points were originally meant to be tiny amount of points for those who learned the extra topics, but now

they are free points for everybody!

○ True / ○ False / ● P=NP?: There exists an algorithm to solve LongestPath in 𝑂(𝑁𝑘) time.

This is essentially how P = NP is defined.

● True / ○ False / ○ P=NP?: There exists an algorithm to check a supposed solution to LongestPath

in 𝑂(𝑁𝑘) time. Yep, there’s a linear time algorithm, check all the

proposed edges.

○ True / ● False / ○ P=NP?: There exists an algorithm to calculate the length in bytes of the shortest

Java program that solves LongestPath. This ended up being a bit more of a

leap even from the bonus topics than I’d meant. This ends up being of equivalent difficulty to the “halting

problem”, which we have not discussed. Free 0.5 points!

… and that’s it!

UC BERKELEY

Login: _ege____

22

Nothing written on this page will be graded.

Data Structures Reference:

HashSet<Key> {
 void add(Key k)
 boolean contains(Key k)
}

HashSet is the same except Key must

implement Comparable<Key>

MinPQ<Item extends Comparable<Item>> {
 MinPQ(Comparator<Item> c)
 void insert(Item x)
 Item min()
 Item delMin()
}
Uses natural order unless comparator given during construction.

HashMap<Key, Value> {
 void put(Key k, Value v)
 boolean containsKey(Key k)
 Value get(k)
}
TreeSet is the same except Key must

implement Comparable<Key>

Stack<Item> {
 void push(Item x)
 Item pop()
}

Queue<Item> {
 void enqueue(Item x)
 Item dequeue()
}

Assume all of these classes implement Iterable and have a size() method.

