
Optional.	Mark	along	the	line	to	show	your	feelings		 Before	exam:	[L____________________J].		
																on	the	spectrum	between	L	and	J.	 	 After	exam:	[L____________________J].	

UC	Berkeley	–	Computer	Science	
CS61B:	Data	Structures	
	
Final Exam, Spring 2017.

This test has 13 questions worth a total of 200 points, and is to be completed in 165 minutes. The exam is
closed book, except that you are allowed to use three double sided written cheat sheets (front and back).
No calculators or other electronic devices are permitted. Give your answers and show your work in the
space provided. Write the statement out below in the blank provided and sign. You may do this
before the exam begins.

“I have neither given nor received any assistance in the taking of this exam.”

 Signature: ___________________________

Points # Points
0 0.5 7 23
1 12 8 0
2 28 9 16
3 14 10 16
4 12 11 12
5 16 12 12
6 12 13 26.5
 TOTAL 200

Name: __________________________

SID: ___________________________

Three-letter Login ID: _________

Left SID: ______________________

My left neighbor has ID: _______

Right SID: _____________________

My right neighbor has ID: ______

Exam Room: _____________________

Tips:
• There may be partial credit for incomplete answers. Write as much of the solution as you can, but

bear in mind that we may deduct points if your answers are much more complicated than necessary.
• There are a lot of problems on this exam. Work through the ones with which you are

comfortable first. Do not get overly captivated by interesting design issues or complex corner
cases you’re not sure about.

• Not all information provided in a problem may be useful.
• See the coding reference sheet on the last page for potentially useful data structures.
• Unless otherwise stated, all given code on this exam should compile. All code has been compiled

and executed before printing, but in the unlikely event that we do happen to catch any bugs in the
exam, we’ll announce a fix. Unless we specifically give you the option, the correct answer is not
‘does not compile.’

• ○ indicates that only one circle should be filled in.
• □ indicates that more than one box may be filled in.
• For answers which involve filling in a ○	or □, please fill in the shape completely.

	 UC BERKELEY
Login: _______	

	

	 2	

0. So it begins (0.5 points). Write your name and ID on the front page. Write the exam room. Check the
IDs of your neighbors. Write the given statement. Sign. Write your login in the corner of every page.
Enjoy your free 0.5 points J.

1. Mystery Spanning Tree 3000 (12 points).

a) (4 pts) For the graph below, list the edges in the order they’re added to the MST by Kruskal’s and

Prim’s algorithm. Assume Prim’s algorithm starts from vertex A. Assume ties are broken in
alphabetical order (i.e. the edge 𝐴𝐵 would be considered before 𝐴𝐶). Denote each edge with
alphabetical overbar notation 𝐴𝐵, which represents the edge from A to B. You may not need all blanks.
For your convenience, the graph is printed twice (to make running algorithms easier).

Prim’s algorithm order: _____ _____ _____ _____ _____ _____ _____ _____ _____

Kruskal’s algorithm order: _____ _____ _____ _____ _____ _____ _____ _____ _____

b) (2 pts) Is there any vertex for which the shortest paths tree (SPT) is the same as your Prim MST above?

○	Yes, and it’s _________ ○ No

c) (6 pts) For the following propositions, fill in true or false completely and provide a brief explanation.

For a proposition that is false, a counter-example suffices. Assume all edge weights are unique.

○ True / ○ False: Adding 1 to the smallest edge across any cut of a graph G must change the total weight
of its minimum spanning tree.

○ True / ○ False: The shortest path from vertex A to vertex B in a graph G is the same as the shortest
path from A to B using only edges in T, where T is the MST of G.

○ True / ○ False: Given any cut, the maximum-weight crossing edge is in the maximum spanning tree.

CS61B FINAL, SPRING 2017
Login: _______

	 3	

2. Sorting (28 points).

a) (2 pts) How many inversions are in the list [A, D, B, W, K] assuming we want the list sorted

alphabetically?

b) (3 pts) Suppose we want to sort the array [5, 6, 10, 17, 14, 12, 13] using in-place heapsort. Give the

array after heapification and a single remove-max operation.

c) (14 pts) Suppose we have N items we want to sort. For each scenario below, pick the “best” sort to get
them into sorted order. Assume for all scenarios that N is very large. There may be multiple correct
answers, and the correct answer may even be ambiguous. Give the running time for the absolute
worst case in the right-most column as a function of N. Running time may not be the only
consideration for “best”. In all cases, assume we’re using Java.

Choose from among 1: Insertion sort, 2: Merge sort, 3: Quicksort (with Hoare partitioning), and 4:
LSD radix sort. You may not need to use all four answers. Assume that we want stability when
potentially useful. Give your answer to “Best Sort” as a number.

Scenario (i.e. What You’re Sorting) Best Sort Running Time
Array of N integers whose max value k is a constant. Do not
include k in your runtime.

 O()

Array of N BigIntegers1 whose max value is N3. Assume
comparison takes log(N) time.

 O()

Array of N objects that implement Comparable, assuming
comparison takes constant time.

 O()

Doubly linked list of N objects that implement Comparable,
assuming constant time comparison and all variables public.

 O()

Array of 10 Strings of length W. Give runtime in terms of W.

O()

Array of N objects that implement Comparable with Θ 𝑁
inversions, assuming compare takes constant time.

 O()

Array of N objects that implement Comparable with Θ 𝑁&
inversions, assuming compare takes constant time.

 O()

d) (9 pts) We call a sort monotically improving if the number of inversions never increases as the sort

is executed. Which sorts from the list below are monotically improving? Assume that all sorts are as
presented during lecture on arrays. Assume insertion sort and selection sort are in-place. Assume
heapsort is in-place and that the array acts as a max heap. Assume that Quicksort is non-randomized,
uses the leftmost item as pivot, and uses the Hoare partitioning strategy (i.e. using “smaller than” and
“bigger than” pointers) from lecture.

□	Insertion sort □	Selection sort □	Heapsort □	Quicksort □	LSD Sort □	MSD Sort

																																																								
1	A BigInteger	is an “immutable arbitrary precision integer.” It can represent any integer, not just those that fit into 32 bits.	

	 UC BERKELEY
Login: _______	

	

	 4	

3. Traversals (14 points). Suppose we have an NAryIntTree, defined as shown below. Any node may
have any number of children. If a node is a leaf, children is null. Assume that children[i] is never
null for any i.

a) (6 pts) Fill in the printTreePostOrder method below, which prints the values of the tree in

postorder, with one val per line. Your solution must be recursive and take linear time in the number
of nodes.

public class NAryIntTree {
 private Node root;
 public class Node {
 public Node[] children;
 public int val;
 }
 public void printTreePostOrder() {
 __
 }

 public __ {
 __
 __
 __
 __
 __
 __

}
 /* ... */
}
b) (8 pts) Fill in the code below which prints out the values of the tree in level order with one val per

line. Your solution must be iterative and take linear time in the number of nodes for any tree.
 private void printTreeLevelOrder() { // is a method of NAryIntTree

}

CS61B FINAL, SPRING 2017
Login: _______

	 5	

4. Algorithms and Data Structures (12 points).

a) (4 pts) In class we primarily considered two graph representations: the adjacency list and the adjacency

matrix. Antares suggests that we can improve the performance of Dijkstra’s algorithm with a third
graph representation he calls an “adjacency heap”. For each vertex v, v’s adjacency heap stores all of
v’s neighbors in a heap ordered by edge weight, so that the smallest edge adjacent to v is at the root
of its heap. Naturally, Antares stores these heaps as arrays. Antares reasons that by considering small
edges first, Dijkstra’s will be able to complete faster.

Will using an adjacency heap result in better, equivalent, or worse asymptotic runtime performance
for Dijkstra’s algorithm than using a regular adjacency list? Assume that we only care about worst
case asymptotic performance. Briefly justify your answer.

○Adjacency heap is better						○ Performance is the same ○ Adjacency heap is worse

Justification: ___

b) (4 pts) Suppose Antares has conjured up the Gulgate Priority Queue (GPQ). Given a GPQ containing
N elements, the worst-case running time for insertion, deletion, and change-priority are given as
follows: Insertion: 𝛩(𝑁), Deletion: 𝛩(𝑁), Change-Priority: 𝛩(1).

Suppose we run the implementation of Dijkstra's algorithm provided in class (where every vertex is
initially inserted into the PQ with infinite priority) using a GPQ on a graph with V vertices and E
edges. What is the worst case runtime of Dijkstra’s? Give your answer in big O notation in terms
of V and E. Assume that E >> V (this means E is much greater than V).

Runtime: O(_______________________________)

c) (4 pts) Suppose Antares has also created a Xelha Quick Union (XQU) to check if two vertices are

connected while running Kruskal’s. Given that there are N items in an XQU, the running time for
XQU operations is as follows: Constructor: 𝛩(𝑁), Union: 𝛩(𝑁 log𝑁), Is-Connected: 𝛩(log𝑁)

Suppose we run the implementation of Kruskal’s algorithm as presented in class using a XQU and a
heap-based priority queue. Recall that in our version of Kruskal’s from class, all edges are initially
inserted into a regular heap-based priority queue and removed one by one, and added to the MST so
long as there are no cycles. What is the worst case runtime of Kruskal’s algorithm? Give your answer
in big O notation in terms of V and E. Assume that E >> V.

Runtime: O(______________________________)

	 UC BERKELEY
Login: _______	

	

	 6	

5. Potpourri (16 points).

a) (6 pts) We learned in lecture and in lab that we can use an array to compactly store a min/max heap,

with formulas to calculate the parent, left child, and right child given a node. Now suppose we want
to store a ternary heap, where every node has 0, 1, 2, or 3 children. Would the compact array
representation work? If your answer is yes, give formulas on the left to calculate the parent, left child,
middle child, and right child. If your answer is no, explain why on the right.

Assuming root is at index: __________
public int parent(int k) { return ________;}
public int left(int k) { return ________;}
public int middle(int k) { return ________;}
public int right(int k) { return ________;}

Impossible, because:

b) (2 pts) In class, we said that anytime you override equals, you must also override hashCode.

Suppose the Yarg class overrides the equals method, but does not override hashCode. Suppose that
yargSet is a HashSet<Yarg>. What are the potential direct consequences of not overriding
hashCode?

○ True / ○ False: yargSet.contains() may return an incorrect result.
○ True / ○ False: yargSet.contains() runs a much higher risk of taking linear time.

c) (6 pts) If we wanted to build a generic TrieSet that could hold many different types, we’d need to
require all such types to implement some interface, much like items in a TreeSet must implement
the Comparable interface (shown below). Give a declaration of an appropriate interface and describe
any methods with comments. Provide useful names for your methods and interface (not silly ones,
sorry). You may not need all blanks.

public interface Comparable<Item> {
 // Returns negative int if this < x, positive if this > x, 0 if equal.
 int compareTo(Item x);
}

public interface __ {

}

d) (2 pts) Suppose the creator of a new DogPicture class is deciding whether or not to implement

interface X, where X is the interface from part c. What is the primary consideration of the creator?
“Will somebody ever want to build a Trie of DogPictures” is not enough of an answer.

CS61B FINAL, SPRING 2017
Login: _______

	 7	

6. Stocks (12 pts). Define the price of a stock as the price of its most recent trade. Suppose we want to
track the highest priced stocks at the end of the day using the code below. Assume the MaxPQ is heap
based and uses the same approach as detailed in lecture (where insertion and deletion operations take
worst case logarithmic time). Assume all stock names are unique. Assume STOCK_LIST is a list of Stock
objects with prices equal to yesterday’s final price. A stock may be traded multiple times in one day.
public static List<Stock> getMostExpensiveStocks(int k) {
 MaxPQ<Stock> rankedStocks = new MaxPQ<>();
 HashMap<String, Stock> nameToStock = new HashMap<>();
 addAllStocks(STOCK_LIST, nameToStock); //assume nice hashcode spread
 addAllStocks(STOCK_LIST, rankedStocks); //uses bottom up heapification
 while (marketIsStillOpenToday()) { //market closes at 5 PM
 Trade t = getNextTrade(); //waits if no trade available
 Stock s = nameToStock.get(t.name); //assume key always in map
 s.price = t.price; //may be higher or lower
 }
 ArrayList<Stock> returnStocks = new ArrayList<Stock>();
 for (int i = 0; i < k; i += 1) { //assume k <= s
 returnStocks.add(rankedStocks.delMax());
 }
 return returnStocks;
}

Where the compareTo method of Stock is defined as public double compareTo(Stock s) {
return this.price - s.price; } where price is an integer.

a) Which of the correctness or compilation issues listed below are present in this code? Check all that
apply. If you believe there are compilation errors, consider the other boxes assuming the compilation
errors are fixed. Assume k is smaller than the number of stocks.

□Compilation: The method is supposed to return a List, but returns an ArrayList.
□Compilation: The HashMap cannot point to items inside of the MaxPQ because the MaxPQ’s instance
 variables are private.
□Correctness: The algorithm actually returns the k cheapest stocks.
□Correctness: The algorithm may return a list with duplicates if the same stock is traded multiple times.
□Other (explain): __

b) What is the worst case runtime and space complexity of the code above, assuming we fix only any
compilation errors you identified in part a? Give your answer in O notation. Your bounds should be as
tight as possible with no unnecessary lower order terms or constant factors. Give your answers in terms
of S, T, and k, where S is the number of stocks, T is the number of trades, and k is the given argument.

Runtime complexity: O(_____________________________________)
Space (a.k.a. memory) complexity: O(_____________________________________)

	 UC BERKELEY
Login: _______	

	

	 8	

7. Arithmetic Tree (23 pts). An arithmetic tree is a tree that stores an arithmetic expression. For this
problem, assume all nodes are either multiplication (represented with ⨉), addition (represented with +),
or a number (represented as a written integer). For example, the following tree represents
(1 ⨉ 5 ⨉ (2 + 2)) + (3 + -1) + (3 ⨉ -5 ⨉	1), which would evaluate to 7.

Your job is to fill out the code below such that evaluateTree(Node tree) evaluates the arithmetic
tree rooted at tree to its correct value. For example, if evaluateTree were applied to the ⨉ node at the
top left of the figure above, it would return 20. Multiplication and addition operator nodes can have any
number of children. You do not need to check for bad inputs (e.g. null children). You may find it easier
to work your way from the end of the problem back to the front. You may not need all blanks.

public abstract class Node {
 public List<Node> children;
 public abstract void processNode(Stack<Integer> stk);
}

public class ArithmeticTreeEvaluator {
 public static int evaluateTree(Node tree) {
 Stack<Integer> stk = new Stack<>();
 __;
 __;
 }

 private static void evaluateTreeHelper(Node tree, Stack<Integer> stk) {
 for (___) {
 evaluateTreeHelper(_____________________);
 }
 __;
 }
}

If you’re stuck on this problem, come back later!

CS61B FINAL, SPRING 2017
Login: _______

	 9	

public abstract class OperatorNode extends Node {
 public int numArgs() { /* Returns number of args for this node. */ }
 public abstract int apply(int arg1, int arg2);
 public void processNode(Stack<Integer> stk) {
 int res = stk.pop();
 for(__) {
 res = ___;
 }
 stk.push(res);
 }
}

public class ArgNode extends Node {
 public int value;
 @Override
 public void processNode(Stack<Integer> stk) {
 __;
 }
}

/* Don't overthink this! */
public class MultiplicationNode extends OperatorNode {
 @Override
 public int apply(int arg1, int arg2) {
 return ___;
 }
}

public class AdditionNode extends OperatorNode {
 @Override
 public int apply(int arg1, int arg2) {
 return ___;
 }
}

8. PNH (0 points). This United States President won office with the smallest fraction of the popular vote
in the history of United States presidential elections.

	 UC BERKELEY
Login: _______	

	

	 10	

9. Asymptotics (16 points). For each of the code snippets below, give the best and worst case runtimes
in terms of N. Give the best runtimes in the column to the left, and the worst in the column to the right.
Best:
_Θ_____

Worst:
_Θ_____

public static void f1(int N) {
 if (N == 0) { return; }
 f1(N / 2);
 f1(N / 2);
 g(N); // runs in Θ(N2) time
 }

_Θ_____ _Θ_____ public static int f2(String[] x, int i) {
 int N = x.length;
 int total = 0;
 try {
 while (i < N) {
 total += x[i].length();
 i += 1;
 }
 } catch(NullPointerException e) {
 x[i] = "null";
 f2(x, i);
 }
 return total;
}

_Θ_____ _Θ_____ Assume t is a binary IntTree with N nodes:

public static void f3(IntTree t) {
 t.value = t.value * 2;
 if (t.left != null) { f3(t.left); }
 if (t.right != null) { f3(t.right); }
}

_Θ_____ _Θ_____ Assume t is a binary IntTree with N nodes:

public static void f4(IntTree t) {
 t.value = t.value * 2;
 if (t.left != null) { f4(t.left); }
 t.right = t.left;
 if (t.right != null) { f4(t.right); }
 t.left = t.right;
}

CS61B FINAL, SPRING 2017
Login: _______

	 11	

10. Return of the XelhaTree (16 points). Write a function validXelhaTree which takes an IntTree
and a List and returns true if the IntTree is a XelhaTree for the list. You may not need all lines. A
XelhaTree is valid if it obeys the min heap property, and if an in-order traversal of the XelhaTree
yields the list of items passed to createXelhaTree (in the same order). One line if statements with {}
on the same line are fine. You may not need all the blanks. Assume there are no duplicates.

public class XelhaTreeTest {
 public static class IntTree {
 public int item;
 public IntTree left, right;
 }
 public static IntTree createXelhaTree(List<Integer> x) { ... }
 /** If x is null, returns largest possible integer 2147483647 */
 private static int getItem(IntTree x) {
 if (x == null) { return Integer.MAX_VALUE; }
 return x.item;
 }
 public static boolean isAHeap(IntTree xt) {

 ___ }
 public static void getTreeValues(IntTree xt, List<Integer> treeValues){

 ___ }
 public static boolean validXelhaTree(IntTree xt, List<Integer> vals) {
 List<Integer> treeValues = new ArrayList<Integer>();
 /* getTreeValues adds all values in xt to treeValues */
 getTreeValues(xt, treeValues);

 return isAHeap(xt) && ___________________________________ }

	 UC BERKELEY
Login: _______	

	

	 12	

11. MaxPQ (12 points). Complete the implementation of MaxPQ using data structures from the reference
sheet on the last page of the exam. You may not need all blanks. Write at most one statement per line.

public class MaxPQ<Item extends Comparable<Item>> _________________ {

 public MaxPQ() {
 __
 __
 }

 public class __ {
 __
 __
 __
 __
 }

 public Item delMax() {
 __
 __
 }

 public void insert(Item x) {
 __
 __
 }
}

Welcome to the Chill Out Zone.

CS61B FINAL, SPRING 2017
Login: _______

	 13	

12. Danger and Optimization (12 points).

a) (5 pts) Suppose you provide a computing service where users can upload lists of integers and receive

back the numbers in sorted order. Which sorts below would be appropriate to choose for this task,
assuming you want to prevent users from submitting inputs that either result in terrible2 runtime or
cause an exception? Assume you are using Java.

○ Appropriate / ○ Inappropriate : Merge Sort
○ Appropriate / ○ Inappropriate : Insertion Sort
○ Appropriate / ○ Inappropriate : Quicksort using Hoare partitioning and that starts by shuffling
○ Appropriate / ○ Inappropriate : LSD
○ Appropriate / ○ Inappropriate : Recursive MSD

b) (5 pts) Suppose you provide a service where users can upload a list of names (stored as Java Strings)

and it will return the list of all unique Strings. Which set implementations below would be appropriate
to choose for this task, assuming you want to prevent users from submitting inputs that either result in
terrible runtime or cause an exception?

○ Appropriate / ○ Inappropriate : 2-3 Tree based Set
○ Appropriate / ○ Inappropriate : LLRB based Set
○ Appropriate / ○ Inappropriate : Hash based Set
○ Appropriate / ○ Inappropriate : Trie based Set
○ Appropriate / ○ Inappropriate : TST based Set

c) (2 pts) Suppose you provide a service where users can upload their own custom graphs and a start

vertex, and you will find the list of all vertices reachable from the start. Which graph search algorithms
would be appropriate to choose for this task, assuming you want to prevent users from submitting
inputs that either result in terrible runtime or cause an exception?

○ Appropriate / ○ Inappropriate : Recursive DFS
○ Appropriate / ○ Inappropriate : BFS

d) (0 pts) What should Josh name his future kid (assume female if you want a gender specific name)?

																																																								
2	By terrible we mean: Imagine you are demoing your website and want to impress someone with its speed. Does it run so
slow that you are embarrassed? If so, that is terrible.		

	 UC BERKELEY
Login: _______	

	

	 14	

13. Reductions (26.5 points). Often in computer science, problems are just other problems in disguise.
Complete each problem below according to the directions given. Many of these problems are very
challenging.

a) (3 pts) Describe an algorithm to find a maximum spanning tree. Your algorithm must use Kruskal's

as a "black box," that is, without any modifications. Your answer should be brief.

b) (5 pts) Suppose you want to find the SPT of a graph, but where you redefine the total cost of a path as

follows. Let cost(List<Edge>) be the sum of the weights of the edges, plus the number of edges.
In other words, we want to run Dijkstra’s taking into account not just the weights of the edges, but
also the number of edges. Describe an algorithm to find this shortest paths tree. Your algorithm must
use Dijkstra’s as a “black box”. Your answer should be brief.

c) (5 pts) Dijkstra’s algorithm sometimes fails on graphs with negative edges. Suppose we have a graph
G with a single negative edge with weight -Q, and we want to find the shortest path. Suppose we
construct a new graph G’ where every edge has Q added to its weight. If we run Dijkstra’s on G’, does
the resulting shortest path tree always give the correct shortest paths for G? If yes, explain why. If no,
provide a counter-example.

○	Yes, because:		
	
	
	
	
	

○	No, counter-example:	

d) (6 pts) Suppose that we’re using a programming language Zulg where instead of comparison we have

a zelch operation. Suppose that we prove that “puppy, cat, dog”3, requires 𝛺(𝑁 log log𝑁) zelch
operations. Assume that zelch takes constant time. For each of the following statements, determine
whether the answer is false, true, or the answer depends on whether P = NP.

○ True / ○ False / ○ P=NP?: A zelch based sort requires at least 𝛺(𝑁 log log𝑁) zelch operations.
○ True / ○ False / ○ P=NP?: Sorting an array in Zulg requires 𝛩(𝑁 log log𝑁) time in the worst case.
○ True / ○ False / ○ P=NP?: The optimal sorting algorithm in Zulg requires 𝑂(𝑁 log log𝑁) time in
 the worst case.
○ True / ○ False / ○ P=NP?: All sorting algorithms in Zulg require 𝑂(𝑁 log log𝑁) time in the worst
 case.

																																																								
3 Recall that “puppy, cat, dog” is a game from lecture where we have N boxes, each containing a unique object (e.g. a puppy,
a cat, and a dog) of known size, and our job is to determine which box contains which object.

CS61B FINAL, SPRING 2017
Login: _______

	 15	

e) (6 pts) Suppose we have the abstract data type MinimumPQ, defined as an interface in Java as shown
below:

public interface MinimumPQ<Item extends<Comparable<Item>> {
 public void add(Item x);
 public Item removeMin();
 public Item min();
}

For each statement below, state whether it is true, false, or “depends on whether P = NP”. Assume that all
implementations are correct.

○ True / ○ False / ○ P=NP?: There exists a possible MinPQ implementation for which add requires

 𝛩(log log𝑁) time in the worst case.
○ True / ○ False / ○ P=NP?: There exists a possible MinPQ implementation for which removeMin

 requires 𝛩(log log𝑁) time in the worst case.
○ True / ○ False / ○ P=NP?: There exists a possible MinPQ implementation for which add and

 removeMin require 𝛩(log log𝑁) time in the worst case.
○ True / ○ False / ○ P=NP?: There exists a possible MinPQ implementation for which add requires

 𝛩(1) time in the worst case.
○ True / ○ False / ○ P=NP?: There exists a possible MinPQ implementation for which removeMin

 requires 𝛩(1) time in the worst case.
○ True / ○ False / ○ P=NP?: There exists a possible MinPQ implementation for which add and

 removeMin require 𝛩(1) time in the worst case.

f) (1.5 pts) Consider the LongestPath problem, i.e. given a graph, does there exist a path with total

weight k or greater? Suppose that we prove that LongestPath cracks 3SAT (i.e. 3SAT reduces to
longest path). For each of the following statements, determine whether the answer is false, true, or the
answer depends on whether P = NP. Let N be the number of edges.

○ True / ○ False / ○ P=NP?: There exists an algorithm to solve LongestPath in 𝑂 𝑁0 time.
○ True / ○ False / ○ P=NP?: There exists an algorithm to check a supposed solution to LongestPath

 in 𝑂 𝑁0 time.
○ True / ○ False / ○ P=NP?: There exists an algorithm to calculate the length in bytes of the shortest

 Java program that solves LongestPath.

… and that’s it!	

	 UC BERKELEY
Login: _______	

	

	 16	

Nothing written on this page will be graded.

Data Structures Reference:
HashSet<Key> {
 void add(Key k)
 boolean contains(Key k)
}

HashSet is the same except Key must
implement Comparable<Key>

MinPQ<Item extends Comparable<Item>> {
 MinPQ(Comparator<Item> c)
 void insert(Item x)
 Item min()
 Item delMin()
}
Uses natural order unless comparator given during construction.

HashMap<Key, Value> {
 void put(Key k, Value v)
 boolean containsKey(Key k)
 Value get(k)
}
TreeMap is the same except Key must
implement Comparable<Key>

Stack<Item> {
 void push(Item x)
 Item pop()
}

Queue<Item> {
 void enqueue(Item x)
 Item dequeue()
}

Assume all of these classes implement Iterable and have a size() method.

