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Midterm 1

Statistics 153 Introduction to Time Series

March 7th, 2019

General comments:

1. Flip this page only after the midterm has started.

2. Before handing in, write your name one every sheet of paper!

3. Anyone caught cheating on this midterm will receive a failing grade

and will also be reported to the University Office of Student Conduct.

In order to guarantee that you are not suspected of cheating, please

keep your eyes on your own materials and do not converse with others

during the midterm.
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1. Consider the following model for time series data Xt = Xt−1 +Zt + δ, where δ is some non-zero

constant and Zt is white noise with variance σ2.

(a) Give the definition of weak and strong stationarity.

s (4 Points)

A sequnce of random variables (Xt) is strongly stationary if for any choice of times

t1, ..., tk and lag h, (Xt1 , ..., Xtk) is equal in distribution of (Xt1+h, ..., Xtk+h).

The sequence if weakly stationary if Xt all have common mean, and for all choices t,

s, and h, Cov(Xt, Xt+h) = Cov(Xs, Xs+h).

(b) Show that there exist no stationary solution for Xt in the above model.

s (2 Points)

We observe that EXt = EXt−1 + δ. Since δ 6= 0, EXt 6= EXt−1, so the expectations

are not the same for all t.
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(c) From now on suppose that X0 = 0. Compute the mean and the variance of Xt for all t > 0.

s (3 Points)

Observe that Xt can be written as

Xt = tδ +

t∑
k=1

Zk (1)

Taking expectations, we find that EXt = tδ, since the Zk’s are zero mean.

Next, notice that Xt−1 and Zt are uncorrelated, since the Zt’s are assumed to be

uncorrelated. Therefore, V ar(Xt) = V ar(Xt−1) + V ar(Zt) = V ar(Xt−1) + σ2. Hence,

V ar(Xt) = tσ2, noting that V ar(X0) = 0.

(d) Is Xt homoscedastic? Explain.

s (1 Points)

Xt is not homoscedastic because the variance grows with t.
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(e) Propose an invertible function f(·) such that the transformed data f(Xt) has approximately

constant variance. Explain.

Hint: You may assume that all your observations are positive.

s (3 Points)

Let µt = EXt, so V ar(Xt) = Cµt where C = σ2/δ.

We use a variance stabilizing tranformation. We consider a function f , and do a Taylor

expansion about µt:

f(Xt) ≈ f(µt) + f ′(µt)(Xt − µt) (2)

So

V ar(f(Xt)) ≈ [f ′(µt)]
2V ar(Xt) (3)

= [f ′(µt)]
2Cµt (4)

We want the variance to be constant, so we should choose f(x) to satisfy [f ′(x)]2 = 1/x,

and conclude that f(x) =
√
x.

In summary, we proopose a variance stabilizing transform of f(Xt) =
√
Xt.
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(f) Propose an invertible transformation of Xt such that it is stationary. Explain.

s (3 Points)

Observe that ∇Xt = Xt −Xt−1 = Zt + δ ∼WN(δ, σ2). Hence ∇Xt is stationary.
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2. Consider the stationary, zero-mean AR(1) model Xt = 0.5Xt−1 + Zt and the MA(1) model

Wt = 0.5Zt−1 + Zt, where Zt is some white noise with variance σ2.

(a) For each of Zt,Wt, and Xt give the ACVF and ACF function.

i. For Zt:

s (1 Points)

By definition of white noise, the ACVF fucntion Cov(Zt, Zt+h) is zero if h > 0 and

σ2 otherwise. Its ACF is then 0 if h > 0 and 1 otherwise.

ii. For Wt:

s (2 Points)

We compute

V ar(Wt) = 0.25V ar(Zt−1) + V ar(Zt) = 1.25σ2 (5)

Next,

Cov(Wt,Wt+1) = Cov(0.5Zt−1 + Zt, 0.5Zt + Zt+1) (6)

= 0.5V ar(Zt) = 0.5σ2 (7)

Finally observe that Cov(Wt,Wt+h) = 0 if h > 1.

In summary, the ACVF is 1.25σ2 if h = 0, 0.5σ2 if h = 1, and 0 otherwise. The

ACF is then 1 if h = 0, 0.4 if h = 1, and 0 otherwise.
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iii. For Xt:

s (2 Points)

We recall the MA representation of the AR(1) process, as

Xt =

∞∑
j=0

(0.5)jZt−j (8)

Hence we compute the ACVF as

ACV F (h) = σ2
∞∑
j=0

0.5j0.5j+h = σ20.5h
∞∑
j=0

0.52j = σ2 0.5h

1− 0.52
(9)

for h ≥ 0. The ACF is then

ACF (h) = 0.5h, h ≥ 0 (10)
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(b) For each of Zt,Wt, and Xt give the approximate mean and variance of its sample ACF at

lag 2 for n = 100 observations.

Hint: Recall Bartlett’s formula Wij =∑∞
m=1 (ρ(m+ i) + ρ(m− i)− 2ρ(i)ρ(m)) (ρ(m+ j) + ρ(m− j)− 2ρ(j)ρ(m))

i. For Zt:

s (2 Points)

Bartlett’s formula says that the sample ACF at lag 2, r2, is approximately normal

with mean ρ(2) and variance W22/100,

W22 =

∞∑
m=1

(ρ(m+ 2) + ρ(m− 2)− 2ρ(2)ρ(m))2 (11)

So for Zt, W22 is given by 1 since ρ(m) = 0 for m > 0.

In sum, Er̂2 ≈ 0 and V ar(r̂2) ≈ 1/100.
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ii. For Wt:

s (4 Points)

For Wt, we have ρ(m) = 0 for m ≥ 1, so we compute

W22 = ρ(0)2 + ρ(−1)2 + ρ(1)2 = 2ρ(1)2 = 1 + 2(0.4)2

So V ar(r̂2) ≈ 1.32/100, and Er̂2 ≈ 0.
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iii. For Xt:

s (4 Points)

Recall that ρ(h) = 0.5|h|. Hence, here

W22 =

∞∑
m=1

(0.5m+2 + 0.5|m−2| − 2(0.5)2+m)2 (12)

= (0.53 + 0.51 − 2(0.5)3)2 +

∞∑
m=2

(0.5m+2 + 0.5m−2 − 2(0.5)2+m)2 (13)

= (0.375)2 +

∞∑
m=2

(0.5)2m(0.52 + 0.5−2 − 2(0.5)2)2 (14)

= (0.375)2 + (3.75)2
∞∑
m=2

(0.5)2m (15)

= (0.375)2 + (3.75)2
1

12
=

21

16
(16)

In summary, Er̂2 ≈ (0.5)2 and V ar(r̂2) ≈W22/100 = 21/1600.
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Figure 1: Sample ACFs of different time series data.

(c) Figure 1 shows sample ACFs for each of the three models for n = 100 observations. Which

figure corresponds to which process? Explain.

s (3 Points)

The first one looks the most like white noise, since the ACF values are all below the

blue line.

The second looks most like the AR process Xt, since we computed the ACF(h) to

decrease geometrically as (0.5)h.

The last looks most like the MA process Wt since we computed the ACF to be 0.4 at

h = 1 and 0 for h > 1.
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3. For zero mean time series data {Xt} consider the model (1 − 0.2B)(Xt − 0.5Xt−1) = (Zt −
0.6Zt−1 + 0.05Zt−2), where {Zt} is white noise with variance σ2 = 4.

(a) Identify {Xt} as an ARMA(p,q) model and give its MA and AR polynomials.

s (4 Points)

Writing Xt in polynomial and canceling common factors gives:

(1− .2B)(1− .5B)Xt = (1− .1B)(1− .5B)Zt

(1− .2B)Xt = (1− .1B)Zt

We have an ARMA(1,1) model. The AR polynomial is 1−.2B, and the MA polynomial

is 1− .1B.
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(b) Is the model invertible and causal?

s (2 Points)

The AR polynomial 1 − .2B has a root of 5, and the MA polynomial 1 − .1B has a

root of 10. Both have magnitude greater than 1, and so this model is both causal and

invertible.
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(c) Find its unique stationary solution.

s (4 Points)

We need to ”solve for” Xt. Since the model is causal, we can invert the AR polynomial:

1

1− .2B
(1− .2B)Xt =

1

1− .2B
(1− .1B)Zt

=⇒ Xt = (
∑
j≥0

(
B

5
)j)(Zt −

1

10
Zt)

=
∑
j≥0

(
1

5
)jZt−j −

1

10

∑
k≥0

(
1

5
)kZt−1−k

=
∑
j≥0

(
1

5
)jZt−j −

1

2

∑
k≥0

(
1

5
)k+1Zt−(k+1)

=
∑
j≥0

(
1

5
)jZt−j −

1

2

∑
k≥1

(
1

5
)kZt−k

= Zt +
1

2

∑
j≥1

(
1

5
)jZt−j
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(d) Compute its ACVF.

s (4 Points)

The Zt term isn’t being multiplied by a 1
2 , so in its current form we can’t treat the

ACVF calculation like that of a causal AR(1) process. However, a small trick will

simplify the calculation.

Rewriting, Xt = Zt + 1
2

∑
j≥1

( 1
5 )jZt−j = 1

2Zt + 1
2 (

∑
j≥0

( 1
5 )jZt−j) = 1

2 (Zt + Yt).

Note that Yt is the MA(∞) form of a causal AR(1) model with φ = 1
5 , whose ACVF

we already know. Thus, using bilinearity to expand the covariance:

Cov(Xt+h, Xt) =
1

4
Cov(Zt+h + Yt+h, Zt + Yt)

=
1

4
[Cov(Zt+h, Zt) + Cov(Zt+h, Yt) + Cov(Zt, Yt+h) + Cov(Yt+h, Yt)]

Now, we can use this to treat two cases:

h=0. All covariance terms are nonzero:

Cov(Xt, Xt) =
1

4
[4 + 4 + 4 +

4

1− 1
5

2 ] = 4 +
1

24
=

97

24

h > 0. Now we can ignore the first two terms.

Cov(Xt+h, Xt) =
1

4
[Cov(Zt, Yt+h) + Cov(Yt+h, Yt)]

=
1

4
[4(

1

5
)h +

4( 1
5 )h

1− 1
5

2 ] = (1 +
25

24
)(

1

5
)h = (

49

24
)(

1

5
)h
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(e) Assume someone wants to use this model to predict weekly car sales. On average the

company sells 100 cars per week. Two weeks ago they sold 95 cars and last week they sold

101 cars. Based on this, what is the best linear predictor of car sales next week?

Hint: You do not have to compute the actual value, it is enough to write down a linear

system of equations that needs to be solved.

s (3 Points)

By causality, we know Xt has a MA(∞) representation and therefore is mean zero.

However, we’re given that the average of car sales Yt is 100 per week. Assuming this

is (approximately) the population mean, we instead model Yt − 100 = Xt using the

ARMA process.

Thus, we can use the defining equations of the BLP for mean-zero RV’s:

E((Xt − β1Xt−1 − β2Xt−2)Xt−1) = 0 ; E((Xt − β1Xt−1 − β2Xt−2)Xt−2) = 0

Putting this in matrix form, we have:[
γ(0) γ(1)

γ(1) γ(0)

]
β =

[
γ(1)

γ(2)

]

Plugging in values: [
97/24 49/24(1/5)

49/24(1/5) 97/24

]
β =

[
49/24(1/5)

49/24(1/25)

]

We can solve for β to obtain the weights of our BLP. So, the BLP ofXt is β1(1)+β2(−5),

and as Xt = Yt − 100 our prediction for sales is Ŷt = β1(1) + β2(−5) + 100.
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4. A scientist considers the model Xt = mt + st +Wt for some time series data, where mt = a t+ b

is a linear trend function with parameters a, b and st is a seasonal component with period 2, that

is, st = st+2 for all t. Wt is some zero mean stationary process.

(a) First, the scientist wants to estimate the trend function mt using a filter of the form 1 +

αB+ βB2 + γB3, where B denotes the backshift operator and α, β, γ are parameters. How

should she chose the parameters α, β, γ such that the filtered time series is an unbiased

estimator of the trend mt, that is, E((1 + αB + βB2 + γB3)Xt) = mt?

Hint: First, argue that without loss of generality you can assume that s1 + s2 = 0.

s (5 Points)

First, we tackle the hint. If st + st+1 = δ 6= 0, let b′ = b+ δ
2 and s′t = st − δ

2 . Then,

Xt = at+ b+ st +Wt = at+ b′ + s′t +Wt

and we may assume WLOG that st + st+1 = 0.

Upon taking the expectation and setting st−2 = st, we have:

E((1 +B + βB2 + γB3)Xt) = (1 + α+ β + γ)(at+ b)− (α+ 2β + 3γ) + [(1 + β)st + (α+ γ)st−1]

Since we want st + αst−1 + βst + γst−1 = 0, by the hint one way to do that is to have

1 + β = α+ γ.

Therefore, we have three equations we want to satisfy:

1 + α+ β + γ = 1 (1)

α+ 2β + 3γ = 0 (2)

1 + β = α+ γ (3)

Substituting (3) into (1), we see:

(1 + β) =
1

2
=⇒ β = −1

2

Then, plugging β = − 1
2 into (2) and adding it to (3) gives γ = 1

4 . Solving for α then

gives α = 1
4 .

Therefore, one possible filter is α = γ = 1
4 , β = − 1

2 .
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(b) Is Xt a stationary process? Explain.

s (1 Points)

In general, no.

E(Xt) = at+ b+ st

E(Xt−2) = a(t− 2) + b+ st−2 = at+ b+ st − 2a

Therefore, stationarity requires that a = 0. A similar analysis shows that st = st−1

and so st must be a constant. The model is stationary only when it has no linear trend

or seasonality at all - ie. it’s just white noise plus a constant.

(c) Propose a transformation using differencing to make the process stationary. Explain.

s (3 Points)

Since our trend is a sum of linear and seasonal components, we can difference appro-

priately to handle each. In fact, since differencing by any lag destroys a linear trend,

we can just difference by lag 2, the period, to get rid of both trends at the same time

∇2Xt = at+ b+ st +Wt − [a(t− 2) + b+ st−2 +Wt−2] = 2a+Wt −Wt−2

A linear sum of stationary process is stationary.
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(d) For the stationary process Wt the scientist considers two different models:

• an MA(1) model,

• an AR(1) model.

For both of these choices identify the transformed data from (4c) as some ARMA model.

Hint: It is enough to state the orders of the respective ARMA models with explanation.

s (6 Points)

MA(1) model. Wt = (1− θB)Zt. Let Yt = ∇2Xt. Then,

Yt − 2a = (1−B2)Wt = (1−B2)(1− θB)Zt = (1− θB −B2 + θB3)Zt

So Yt = ∇2Xt is a MA(3) model.

AR(1) model. Zt = (1− φB)Wt. Then,

Yt − 2a = (1−B2)Wt

=⇒ (1− φB)(Yt − 2a) = (1−B2)(1− φB)Wt

= (1− φB)(Yt − 2a) = (1−B2)Zt

Therefore, Yt is a ARMA(1,2) process.
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5. For each statement, indicate whether it is true or false and give a short explanation.

You only get points when both, True/False and the explanation, are correct.

(a) For the sample autocorrelations of n = 1, 000 i.i.d. white noise random variables at lags

h = 1, . . . , 100, you expect on average 5 of them to be larger than 1.96 in absolute value.

[ ] True [x] False

Explanation: You expect on average 5 of them to be larger than 1.96/
√
n = 0.0196 in

absolute value.

(b) The sample autocorrelations of an AR(1) process with i.i.d. white noise are (for large sample

size) approximately i.i.d..

[ ] True [x] False

Explanation: By Bartlett’s formula they are going to be correlated and hence not i.i.d..

(c) Applying a linear (time invariant) filter to a stationary process results again in a stationary

process.

[x] True [ ] False

Explanation: This follows easily by bilinearity of the covariance.

(d) When you want to fit a seasonal parametric function of the form st = a0 +∑k
f=1 (af cos(2πft/d) + bf sin(2πft/d)) with parameters a0, a1, . . . , ak, b1, . . . , bk it can be

helpful to chose k > d/2.

[ ] True [x] False

Explanation: For k ≥ d/2 function st has at least d parameters and thus, every d-periodic

seasonal function can be written in that form. There is no point in choosing k > d/2.

(e) A time series {Xt} where Xt follows a Gaussian distribution for each t is a Gaussian process.

[ ] True [x] False

Explanation: One also needs that (Xt1 , . . . , Xtk) is multivariate Gaussian for every collection

t1, . . . , tk.

(f) Whether a time series is invertible or not is fully determined by its finite dimensional

distributions.

[ ] True [x] False

Explanation: Invertibility is a property of the relation of the white noise {Zt} and the time

series {Xt}, not of {Xt} alone.

(g) Whether a time series is strongly stationary or not is fully determined by its mean and

covariance function.

[ ] True [x] False

Explanation: In general this depends on the full finite dimensional distributions.

(h) Whether a Gaussian process is strongly stationary or not is fully determined by its mean

and covariance function.
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[x] True [ ] False

Explanation: The Gaussian distribution is already fully determined by mean and covariance

structure and hence the assertion is true.

s (8 Points)
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