
SOLUTIONS 

CS 152 Computer Architecture and Engineering 
CS 252 Graduate Computer Architecture 

Midterm #2 
April 11th, 2018 

Professor Krste Asanovic 
Name:______________________ 

I am taking CS152 / CS252 

This is a closed book, closed notes exam. 

80 Minutes. 20 pages. 

Notes: 
● Not all questions are of equal difficulty, so look over the entire exam and              

budget your time carefully. 
●  ​Please carefully state any assumptions you make. 
●  ​Please write your name on every page in the exam. 
● You must not discuss an exam’s contents with other students who have not 

taken the exam. If you have inadvertently been exposed to an exam prior to 
taking it, you must tell the instructor or TA. 

● You will receive no credit for selecting multiple-choice answers without giving 
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Name:  ____________________________ 

Question 1: Out-of-Order Execution [ 25 + 5 points ] 
   

Question 1.A (10 points) 

For this question, we want to schedule the following code on an out-of-order core. 

fld f0, 0(x1) 
fld f1, 8(x1) 
fmul.d f0, f0, f1 
fadd.d f2, f2, f0 
fld f0, 16(x1) 
fadd.d f2, f2, f0 

The processor is a single-issue core with a data-in-ROB design. The ROB has four 
entries. Instructions can commit one cycle after writeback, and ROB entries can 
be reused one cycle after commit. Instructions that depend on others can issue 
one cycle after the instruction it depends on writes back. Loads and stores take 
two cycles each, floating-point multiplies take three cycles, and floating-point 
adds take five cycles. All functional units are fully pipelined. 

Fill out the table with the cycles at which instructions enter the ROB, issue to the 
functional units, write back to the ROB, and commit. Also fill out the new register 
names for each instruction. Use r0-r3 for the four ROB entries. If the instruction 
producing a source register had already committed before the dependent 
instruction enters the ROB, use the architectural register name. 

Remember that instructions must enter the ROB and commit in order. On each 
cycle, only one instruction can enter the ROB, one can issue, one can write back, 
and one can commit. 

Time  Instruction 

Enter ROB  Issue  WB  Commit  OP  Dest  Src1  Src2 

I​1  -1  0  2  3  FLD  r0  x1   

I​2  0  1  3  4  FLD  r1  x1   

I​3  1  4  7  8  FMUL.D  r2  r0  r1 

I​4  2  8  13  14  FADD.D  r3  f2  r2 

I​5  4  5  8  15  FLD  r0  x1   

I​6  5  14  19  20  FADD.D  r1  r3  r0 

  
-1.5 if cycle time row incorrect 
-1 if register row incorrect 
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Question 1.B (15 points) 
 
We execute the following program on an out-of-order core with a unified physical 
register file. The “away” target of the branch is in some unrelated part of the 
code. The branch predictor initially predicts that the branch is not taken. But 
after all six instructions complete, the branch resolves to taken and the store 
word has an exception. Show the state of the pipeline after all the mispredicts 
and exceptions are handled. That is, after precise architectural state has been 
restored and the correct branch target is about to be decoded. Assume that 
mispredicts and exceptions use the same rollback procedure and that the free list 
is in FIFO order. We have already completed the first instruction for you. 
 

lw x2, 0(x1)   

add x3, x2, x5   

beq x2, x6, away  mispredict 

addi x1, x1, 8   

sw x3, 0(x1)  exception 

addi x1, x1, 8   
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Rename Table  Physical Register File  Free List 

x0    p0      p5 

x1  p3​ → p8 → p9 → p8 → p3  p1  <x5>  p  p7 ​x 

x2  p4 → p5  p2  <x6>  p  p8 ​x 

x3  p6 ​→ p7  p3  <x1>  p  p9 ​x 

x4    p4  <x2>  p  p0 

x5  p1  p5  <x2>  p  p4 

x6  p2  p6  <x3>  p  p6 

x7    p7  <x3>  p  p9 

x8    p8  <x1>  p  p8 

x9    p9  <x1>  p   

...    ...       

 
 

ROB 

valid  complete  exception  op  p1  PR1  p2  PR2  Rd  LPRd  PRd 

v  c    lw  p  p3      x2  p4  p5 

v  c    add  p  p5  p  p1  x3  p6  p7 

v  c    beq  p  p5  p  p2       

v  c    addi  p  p3      x1  p3  p8 

v  c  x  sw  p  p7  p  p8       

v  c    addi  p  p8      x1  p8  p9 

 
-1 for each incorrect rename table entry 
-0.25 for each incorrect phys reg file entry or markout 
-1 for each incorrect free list markout or addition 
-0.5 if valid not marked out in first ROB row 
-1 for each incorrect ROB row (other than first) 
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Question 1.C ​(252 only, 5 points) 
     
In the previous question, mispredictions and exceptions used the same procedure 
for restoring precise state. Is this an acceptable design for a high-performance 
core? Why or why not? If not, what is an alternative way of handling 
mispredictions? 
 
This is generally not a good design for a high-performance core, because the 
exception rollback procedure is quite expensive. It’s fine for exceptions, since 
they don’t happen very frequently, but branch mispredictions are more common, 
so going through the full rollback procedure can be quite expensive. Most OoO 
cores save snapshots for each branch so that the state can be restored quickly on 
mispredict. 
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Question 2: Branch Prediction [ 20 points ] 
     

For the following question, we are interested in the performance of branches 
when executing the following code. For each part, assume that N = 4 and the 
array A has the values {1, 7, 2, 5}. 
     

C code  RISC-V Assembly 

for (int i = 0; i < N; i++) { 

    int b = A[i]; 

    if (b >= 5) 
        c += b; 
    if (b < 4) 
        c -= b; 
} 

    li x1, A 

    li x4, N 

loop: 

    lw x2, 0(x1)  
    li x5, 5  
    blt x2, x5, skip1  
    add x3, x3, x2  
skip1: 
    li x5, 4 
    bge x2, x5, skip2 
    sub x3, x3, x2 
skip2: 
    addi x1, x1, 4 
    addi x4, x4, -1 
    bnez x4, loop 
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Question 2.A​ ​(​CS152 Only​, 5 points) 

Fill out the table to show what the predictions will be if the branch predictor is a 
BHT indexed by PC with two-bit counters. If the most-significant bit of a counter 
is 1, the predictor predicts taken. Otherwise it predicts not taken. The counters 
are initialized to weakly not-taken (01). The Counter column in the table shows 
the state of the counter before the branch is executed. Assume that the BHT is 
large enough that no aliasing of instruction addresses will occur. 
 

Instruction  Counter  Prediction  Actual 

i=0  blt x2 x5, skip1  01  not taken  taken 

bge x2, x5, skip2  01  not taken  not taken 

bnez x4, loop  01  not taken  taken 

i=1  blt x2 x5, skip1  10  taken  not taken 

bge x2, x5, skip2  00  not taken  taken 

bnez x4, loop  10  taken  taken 

i=2  blt x2 x5, skip1  01  not taken  taken 

bge x2, x5, skip2  01  not taken  not taken 

bnez x4, loop  11  taken  taken 

i=3  blt x2 x5, skip1  10  taken  not taken 

bge x2, x5, skip2  00  not taken  taken 

bnez x4, loop  11  taken  not taken 

 
(0.3 point for each row, +0.3 all corect) 
 
What is the prediction accuracy for each branch? What is the prediction accuracy 
overall? ​(0.5 points for each​) 
blt:​ 0/4 
bge:​ 2/4 
bnez:​ 2/4 
overall:​ 4/12 
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Question 2.B (5 points) 
   

Now assume we change the branch predictor to a BHT indexed by PC and a single 
bit of global history. Assume the global history is initialized to 0, the counters are 
initialized to 01 (weakly not-taken), and there is no aliasing. The Counter columns 
in the table show the state of the counters before the branch is executed. Fill out 
the table with the predictions. ​(3 points for table, 2 points for accuracy) 
 

Instruction  Global 
History 

Counter 
0 

Counter 1  Prediction  Actual 

i=
0 

blt x2 x5, skip1  0  01  01  not taken  taken 

bge x2, x5, skip2  1  01  01  not taken  not taken 

bnez x4, loop  0  01  01  not taken  taken 

i=
1 

blt x2 x5, skip1  1  10  01  not taken  not taken 

bge x2, x5, skip2  0  01  00  not taken  taken 

bnez x4, loop  1  10  01  not taken  taken 

i=
2 

blt x2 x5, skip1  1  10  00  not taken  taken 

bge x2, x5, skip2  1  10  00  not taken  not taken 

bnez x4, loop  0  10  10  taken  taken 

i=
3 

blt x2 x5, skip1  1  10  01  not taken  not taken 

bge x2, x5, skip2  0  10  00  taken  taken 

bnez x4, loop  1  11  10  taken  not taken 

 
What is the prediction accuracy for each branch? What is the prediction accuracy 
overall? 
 
blt:​ 2/4 
bge:​ 3/4 
bne: ​1/4 
Overall: ​6/12 
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Question 2.C ​(5 points) 
 
If you run this code with a large array containing uniformly randomly 
distributed values, which branch do you expect to get the most benefit from 
global history and why? 
 
The bge instruction will benefit the most, because it is correlated with the 
preceding blt instruction. It will usually go in the opposite direction of the blt 
instruction. 
 
(-3 points for wrong reason, -2 points for wrong answer) 
 
 
 
 
 
 
 
 
 
 
 
 
 
Question 2.D ​(CS 252 Only, 5 points) 
 
Explain the motivation for using both BHT and BTB branch-prediction structures 
in the same implementation. 
 
BTB can be placed in the fetch stage for quick target address predictions, but 
should have a small number of entries and can’t cover lots of branches.  
 
BHT is placed in the decode stage only for branch direction prediction. It has a 
large number of entries to cover a large number of branches, but cannot avoid 
pipeline bubbles.  
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Question 3: Load/Store Units [ 20 points ] 
 
Question 3.A (10 points) 
 
Table 3.1 shows the current state of the store queue in an out-of-order processor. The 
instruction number indicates the order of instructions in the program, with lower 
numbers being earlier in program order. Table 3.2 shows the values stored in the data 
cache. 
 
Assume that all stores and loads are for the full 32-bit word and aligned to 32 bits. The 
processor uses conservative out-of-order load/store execution. For each of the following 
loads, can the load be completed under this model? If so, what value does it read? Fill 
out Table 3.3 with your answers. 
 

Instruction 
Number 

Address Value 

3 0x1000 0xF00D3ABC 

6 0x2000 Unknown 

11 Unknown Unknown 

15 0x1000 0xDEADBEEF 

17 Unknown Unknown 

Table 3.1 Store Queue 
 
Address Value 

0x1000 0xAACCBDAF 

0x2000 0xBADE2140 

0x3000 0x1234ABCD 

Table 3.2 Data Cache 
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Instruction 
Number 

Address Can execute? Value 

4 0x2000 yes 0xBADE2140 

5 0x1000 yes 0xF00D3ABC 

8 0x2000 no  

13 0x1000 no  

16 0x1000 yes 0xDEADBEEF 

18 0x3000 no  
Table 3.3 Load Queue 

 
-1 for each incorrect “Can execute” entry 
-1 for each incorrect “Value” entry 

 
Question 3.B (5 points) 
 
Now assume that the processor has address speculation and assumes that unknown 
addresses in the store queue will be different from addresses of pending loads. Which 
of the loads that couldn’t be executed in Question 3.A can now be speculatively issued? 
Give the instruction numbers. What are their speculative values? 
 
Loads 13 and load 18 can now be speculatively issued. Load 13 has the speculative 
value 0xF00D3ABC. Load 18 has the speculative value 0x1234ABCD. 
 
-3 if incorrect numbers identified 
-2 if incorrect value given 
 
Question 3.C (5 points) 
 
After the loads are speculatively issued, store 11 turns out to have address 0x3000 and 
store 17 turns out to have address 0x1000. Which speculative loads were mistakenly 
issued in Question 3.B? How do we recover from mis-speculation? 
 
Load 18 was mis-speculated. We should squash the load and all following instructions. 
Load 13 is fine because the store to the same address comes after it in program order.  
-3 if load 18 not identified as misspeculated 
-2 if recovery method not correct or not mentioned 
-2 if load 13 identified as misspeculated 
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Question 4: VLIW Machines [ 15 points ] 
 
In this problem, we consider the execution of a code segment on a VLIW processor. The code 
we consider is the IMAX kernel, which finds the maximum value and its index in the list. 
 
for (i = 0 ; i < N ; i++) { 
  if (max < l[i]) { 
    idx = i; 
    max = l[i]; 
  } 
} 

 
# t0: i, s0: idx, f0: max, a0: N, a1: pointer of l[i]  
loop: fld f1, 0(a1) # load l[i] 

flt.d t1, f0, f1 # set if max < l[i] 
fmax.d f0, f0, f1 # max = max < l[i] ? l[i] : max 
beqz t1, skip  # if max >= l[i], jump to skip 
addi s0, t0, 0 # update idx  

skip: addi a1, a1, 8 # bump l 
addi t0, t0, 1 # increment i 
bltu t0, a0, loop  # loop 

 
Now we have a VLIW machine with five execution units: 

● two ALU units, latency one cycle, also used for branch operations. 
● one memory unit, latency two cycles, fully pipelined, each unit can perform either a              

store or a load. 
● two FPU units, latency three cycles, fully pipelined, both can perform ​flt.d and             

fmax.d. 
 
Assume there are no exceptions during the execution.  
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A. (5 points) Schedule instructions for the VLIW machine in Table 4-1 without loop             
unrolling and software pipelining. 

 
Label ALU1 ALU2 MEM FPU1 FPU2 

loop:  addi a1,a1,8 fld f1,0(a1)   

      

    fmax.d f0,f0,f1 flt.d t1,f0,f1 

      

      

  beqz t1,skip     

  addi s0,t0,0    

skip: addi t0,t0,1 bltu t0,a0,loop    

      

      

      

      

      

      

 
Table 4-1: VLIW Scheduling without Optimizations 

 
-1 for each mistake  
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B. (10 points) Schedule instructions for the VLIW machine with software pipelining but            
without loop unrolling in Table 4-2 including the prologue and the epilogue. You do              
not need to find the optimal scheduling. 

 
Label ALU1 ALU2 MEM FPU1 FPU2 

 addi t0,t0,1 addi a1,a1,8 fld f1,0(a1)   

      

    fmax.d f0,f0,f1 flt.d t1,f0,f1 

 addi t0,t0,1 addi a1,a1,8 fld f1,0(a1)   

      

loop:  beqz t1,skip1  fmax.d f0,f0,f1 flt.d t1,f0,f1 

  addi s0,t0,-2    

skip1: addi t0,t0,1 addi a1,a1,8 fld f1,0(a1)   

 bltu t0,a0,loop     

  beqz t1,skip2   fmax.d f0,f0,f1 flt.d t1,f0,f1 

  addi s0,t0,-2    

skip2:      

      

  beqz t1,skip3    

  addi s0,t0,-1    

skip3:      

      

      

      

      

 
Table 4-2: VLIW Scheduling with Software Pipelining 

 
+1 prologue, +1 correct prologue 
+1 epilogue, +1 correct epilogue  
+1 loop, +1 correct i-2, +1 correct i-1, +1 correct i 
+2 all correct  
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Question 5: Vector Machines [ 15 points ] 
 

A. (CS152 Only ,15 points)​ In this problem, we will vectorize the following code with the 
RISC-V Vector ISA: 

 

double A[N+20], B[2*N]; 
... 
for (i=0; i<N; i++) { 
  A[i] = A[i+20] + B[2*i]*B[2*i+1]; 
} 

 
Fill out the blanks below (the code spans to the next page). 
 
# a0: N, a1: A pointer, a2: B pointer 
# v0, v2-v7: 64-bit float vector 
# v1: 8 bit int vector for mask 
 
loop: setvl t0, a0​_​(2 pt)​__________ # set VL for loop, t0 = VL 

# load A[i+20] ​(3 pts)  

add t1, a1, 160​______________________ 

vld v2, 0(t1)​________________________ 

_____________________________________ 

# load B[2*i], load B[2*i+1] ​(5 pts) 

li, t2, 16​___________________________ 

vlds v3, 0(a2), t2​___________________ 

vlds v4, 8(a2), t2​___________________ 

_____________________________________ 

_____________________________________ 

# Compute A[i+20] + B[2*i]*B[2*i+1] ​(3 pts) 

vmadd v0, v3, v4, v2 ​________________ 

(-2 with more than one instruction)​__ 

_____________________________________ 

_____________________________________ 
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# Store A[i] ​(2 pts) 

vst v0, 0(a1) ​_______________________ 

_____________________________________ 

sll t2, t0, 3  

add a1, a1, t2 # bump A 

sll t3, t0, 4  

add a2, a2, t3 # bump B 

sub a0, a0, t0 # decrement N 

bnez a0, loop # loop 
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B. (CS 252 Only) ​We have a vector machine where MAXVL = 64. There are three vector 
functional units (a multiply unit, an add unit, and a load/store unit) each with 8 lanes and 
each unit (multiply, add, and load/store) is fully pipelined with a 6-cycle latency. 

 
i) ​(5 points)​ What is the minimum vector instruction bandwidth (vector instructions issued per 
clock cycle) to keep all the functional units busy? 
 
3 (functional units) / 8 (= MAXVL / #lanes) 
 
 
 
 
 
 
 
 
 
 
ii) ​(5 points)​ What if the MAXVL was 16? 
 
3 (function units) / 2 (= MAXVL / #lanes) 
 
 
 
 
 
 
 
 
 
iii) ​(5 points)​ How does the minimum vector instruction bandwidth change if the pipeline 
latency increases to 8 cycles? 
 
Nothing as functional units are fully pipelined. 
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Question 6: Multithreading [ 10 + 5 points ] 
     

In this question, we consider a program that computes a running average across 
a long stream. 

     

C code  Assembly 

float *stream = …; 

float *stream_end = ...; 

float avg = 0.0f; 
float total = 0.0, n = 0.0; 

 
while (stream != stream_end) { 
    total += *stream; 
    n += 1.0; 
    avg = total / n; 
    stream++;  
}  

// x1 = stream, x2 = stream_end 
// f0 = avg, f1 = total 
// f2 = n, f3 = 1.0 
loop: 
    flw      f4, 0(x1) 
    fadd.s   f2, f2, f3 
    fadd.s   f1, f1, f4 
    fdiv.s   f0, f1, f2 
    addi     x1, x1, 4 
    bne      x1, x2, loop 

 
We run this on a multithreaded in-order core with no data cache, perfect branch 
prediction, and no threading overhead. The latencies of each type of instruction 
are as follows. 

     

Load/store  16 cycles 

Float to integer conversion  2 cycles 

Floating-point addition  5 cycles 

Floating-point multiply  3 cycles 

Floating-point division  7 cycles 

Integer operations  1 cycle 
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Question 6.A (2 points) 
 
How many threads do we need to run without pipeline stalls if the processor 
switches to another thread every cycle using fixed round-robin scheduling? 
Please show your work. 
 
8 threads 
 
Two instructions between fld and the fadd that depends on it. If load takes 16 
cycles, then you need 16/2 = 8 threads. 
 
2 points if right number and right explanation 
1 point if wrong number but right explanation 
 
 
 
 
 
 
Question 6.B (4 points) 
 
How many threads do we need to run without stalling if the processor only 
switches threads when the next instruction will stall due to a data dependency? 
Show your work. 
 
5 threads 
 
At steady state, we can run five instructions before the fadd dependent on the 
load without blocking. We have to cover 16 - 2 = 14 cycles of latency, which would 
require ⌈14/5⌉ + 1 = 4 threads. However, the fdiv is dependent on the result of the 
fadd right before it, so we still need 5 threads to cover all latencies. 
 
4 points for correct answer and correct explanation 
3 points if answer is 4 and correct explanation 
2 points if correct answer but wrong explanation 
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Question 6.C (2 points) 
 
In the case where we switch threads every cycle, can we reduce the number of 
threads needed to run without pipeline stalls by reordering instructions? How 
can we do this and what is the new number of threads? 
 
The last addi instruction before the branch can be moved up before the second 
fadd instruction. This will increase the number of instructions between the fld 
and fadd to 3 so that we only need ⌈16/3⌉ = 6 threads. 
 
-1 if wrong reordering 
-1 if wrong number of threads 
 
 
 
 
 
 
Question 6.D (2 points) 
 
In the case where we switch only if there is an unmet data dependency, can we 
reduce the number of threads needed to run without stalls by reordering 
instructions? How can we reorder the instructions and what is the new number 
of threads? 
 
No, you cannot reduce the number of threads. Moving the addi to between the 
two fadd instructions doesn’t change the number of threads needed to cover the 
load latency. Moving it to between between the fadd and fdiv changes the threads 
needed to cover that latency to ​ ⌈3/2⌉+1 = 3, but then you need ​⌈14/4⌉ + 1 = 5 
threads to cover the load latency. 
 
2 points for correct answer 
1 point for plausible reordering   
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Question 6.E ​(CS 252 Only, 5 points) 
 
For each following resources, indicate whether or not they are shared in an SMT 
processor. 
 

Program Counter  Duplicated 

Fetch Unit  Shared 

Rename Table  Duplicated 

Physical Register File  Shared 

Issue Window  Shared 

Functional Units  Shared 

ROB  Shared 
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