
 1

CS 152 Computer Architecture and Engineering
CS 252 Graduate Computer Architecture

Midterm #1

March 4th, 2019
SOLUTIONS

Name:______________________
SID:______________________

I am taking CS152 / CS252
(circle one)

This is a closed book, closed notes exam.

80 Minutes, 19 pages.

Notes:
• Not all questions are of equal difficulty, so look over the entire exam!
• Please carefully state any assumptions you make.
• Please write your name on every page in the exam.
• Do not discuss the exam with other students who haven’t taken the exam.
• If you have inadvertently been exposed to an exam prior to taking it, you

must tell the instructor or TA.
• You will receive no credit for selecting multiple-choice answers without

giving explanations if the instructions ask you to explain your choice.

Question CS152 Point Value CS252 Point Value
1 15 15
2 20 --
3 15 --
4 15 --
5 15 15

Grad Supplement -- 50
TOTAL 80 80

 2

Problem 1: (15 Points) Iron Law of Processor Performance

Mark whether the following modifications will cause each of the first three categories to
increase, decrease, or whether the modification will have negligible effect. Assume all other
parameters of the system are unchanged whenever possible. Explain your reasoning.

For the final column “Execution Time”, mark whether the following modifications increase,
decrease, have negligible effect, or whether the modification will have a potentially significant
but ambiguous effect. Explain your reasoning. If the modification has an ambiguous effect,
describe the tradeoff in which it would be a significantly beneficial modification or in which it
would a significantly detrimental modification (i.e., as an engineer would you suggest using the
modification or not and why?).

 Instructions /

Program
Cycles / Instruction Seconds / Cycle Execution Time

a)

Improving
branch
predictor
accuracy.

Negligible

Branch predictors
are not part of the
ISA, so they are not
visible to software.

Decrease

There will be fewer
cases where bubbles
are inserted to
recover from a
mispredicted
branch.

Negligible

No
implementation
details are
specified, so it
could just be a
more efficient
history model.

Decrease

The CPI
advantage will be
large, especially
for a complex
machine, making
this a very
positive change.

 3

b)

Adding a
vector (SIMD)
extension to the
ISA

Decrease

Each instruction
does more work, so
fewer instructions
are required to
express a given
algorithm, assuming
there is some data-
level parallelism.

Increase

Instructions can
have more than one
load / store / cache
miss each.

Also, many easily-
parallelizable
instructions that
would have
otherwise had very
low CPI can be
merged into one
instruction, so a
higher portion of the
remaining
instructions will
contain control and
data hazards, raising
CPI. This second
factor shows that the
CPI increase is
basically
guaranteed.

Increase

One of the most
impactful changes
on cycle time
would be adding
wider register
files to read out
SIMD registers.
This likely has an
even bigger
impact than the
parallel ALUs.

OR

Negligible

New hardware is
intrinsically
parallel

Decrease

Data-level
parallelism that
can be expressed
as short vectors is
ubiquitous, so it is
nearly certain that
the Instructions /
Program
advantage will
outweigh the
drawbacks.

Note that the CPI
drawback only
applies if you use
the SIMD
instructions, and
using a SIMD
instruction is still
a win over the
instruction it
replaces.

c)
Adding an
explicit load-
delay slot.

Increase

NOPs must be
added wherever the
slot cannot be filled
with an instruction
not needing the load
data.

Decrease

No bubbles need to
be inserted to cover
load-use delays.

Negligible

This simplifies
the control, but
the baseline is
likely to resolve
back-to-back
load-use hazards
with bubbles, not
exceptionally long
bypass paths.

Ambiguous

Program and
microarchitecture
dependent.

 4

d)

Adding
software-
prefetching
instructions.

Increase

The software
prefetching
instructions must be
added, which
increases static and
dynamic instruction
count.

Decrease

Software prefetch
instructions execute
quickly, since they
don’t block, and
ideally will prevent
long stalls that wait
for memory.

Negligible

Software
prefetches are no
more expensive to
implement than
loads from a
microarchitectural
implementation
perspective, so
they won’t slow
the pipeline.

OR

Increase:
More instructions
means more
complexity and
delay in complex
implementations
due to control
cost.

Ambiguous

The cache
pressure and
performance hit
from the extra
instructions may
outweigh the
benefit, given
how hard it is to
software prefetch
correctly.

OR

Decrease, (under
assumption they
are being used
effectively)

 5

e)

Adding another
level in the
page-table
hierarchy.

Negligible,
assuming a
hardware page table
walker.

OR

Increase, if there is
a software page
table walker or even
with a HWPT
walker if taking
frequent page faults.

Increase

TLB misses take
longer to handle,
because they
involve more
memory accesses.

Negligible

Traversing an
extra level of the
hierarchy takes
more cycles, but
is not going to
meaningfully
increase the delay
or complexity of
the circuits that
handle TLB
misses.

Decrease

A deeper
hierarchy slows
TLB misses,
while the
advantages of a
deeper page-table
hierarchy are not
in program
execution time.

Actual
advantages:

Freeing up
physical address
space for a
constant virtual
address length.

OR
Accommodating a
larger virtual
address space.

 6

Problem 2: (20 Points) Microcoding (CS152 ONLY)

In this problem, we explore microprogramming by writing microcode for a bus-based
implementation of the RISC-V machine. This microarchitecture is largely the same as the one
described in Handout #1, Problem Set 1, and Lab 2, with a few key differences. For clarity, we
have reproduced the full microarchitectural diagram with new control signals in boldface.

New control signals

• ImmSel may take the value zero; this puts a zero on the bus when enImm is high

• Memory now receives an additional MemSize control signal, which takes the value 0, 1,
or 2 to mean a 8-, 16-, or 32-bit load or store. Assume that load values are zero-extended,
and that the upper bits are ignored when performing stores of less than 32 bits.

• Memory may take multiple cycles to return—make sure to use spin states!
The final solution should be efficient with respect to the number of microinstructions used. Make
sure to use logical descriptions of data movement in the “pseudocode” column for clarity. Credit
will be awarded for realizing that signals may take a “don’t care” or X value, but this is less
important than producing a correct implementation!

 7

A Cheat Sheet for the Bus-based RISC-V Implementation
For your reference, we’ve also included the actual bus-based datapath as well as rehash of some
important information about microprogramming in the bus-based architecture.
Remember that you can use the following ALU operations:

ALUOp ALU Result Output
COPY_A A
COPY_B B
INC_A_1 A+1
DEC_A_1 A-1
INC_A_4 A+4
DEC_A_4 A-4
ADD A+B
SUB A-B
SLT Signed(A) < Signed(B)
SLTU A < B
Table H1-2: Available ALU operations

Remember that the µBr (microbranch) column in Table H1-3 represents a 3-
bit field with six possible values: N, J, EZ, NZ, D, and S.

• If µBr is N (next), then the next state is simply (current state + 1).
• If it is J (jump), then the next state is unconditionally the state specified in the Next State

column (i.e., it’s an unconditional microbranch).
• If it is EZ (branch-if-equal-zero), then the next state depends on the value of the ALU’s

zero output signal (i.e., it’s a conditional microbranch). If zero is asserted (== 1), then the
next state is that specified in the Next State column, otherwise, it is (current state + 1).

• NZ (branch-if-not-zero) behaves exactly like EZ, but instead performs a microbranch if
zero is not asserted (!= 1).

• If µBr is D (dispatch), then the FSM looks at the opcode and function fields in the IR and
goes into the corresponding state.

• If µBr is S, the µPC spins if busy? is asserted, otherwise goes to (current state +1).

Guidelines for enable signals:

• Only one source of data can drive the bus in any cycle
• Don’t worry about marking any of the en__ signals as don’t care. However, other types

of signals should be marked as don’t care where applicable.
• Two control signals determine how the register file is used during a cycle: RegWr and

enReg. RegWr determines whether the operation to be performed, if any, is a read or a
write. If RegWr is 1, then it is a write; otherwise it’s a read. enReg is a general enable
control for the register file. If enReg is 1, then the register reads or writes depending on
RegWr. If enReg is 0, then nothing is done, regardless of the value of RegWr.

• MemWr and enMem function in an analogous way for the memory.

 8

2.A (15 points) Implement a strchridx instruction
Given a string of single-byte characters, find the first occurrence of a specified character. Return
the index of the first occurrence or -1 if the character does not appear in the string. If bits [31:8]
of rs2 are not all zero, the behavior of the instruction is undefined. When the instruction commits,
rs1 and rs2 (and all other architectural registers other than rd) must have their original values!

strchridx rd, rs1, rs2

Arguments: rs1 A pointer to the null-terminated string s

 rs2 The character c to search for

Result: rd The index of the first appearance of c in s, or -1 if it doesn’t appear

For simplicity, you may assume that rd != rs1.

Fill in the microcode table on the next page.

1.B (5 Points) Performance of your strchridx implementation
How many cycles does your strchridx instruction take for each of the following inputs?
Assume that all memory accesses complete in a single cycle (just for the CPI calculation – i.e.,
you must still use spin states). Include all the cycles from executing STRCHRIDX0 to the
instruction that jumps back to FETCH0.
For the implementation on the next page:

• Fetch/dispatch: 3 cycles

• Prologue: 3 cycles

• Iterations: 4 cycles per unmatched character

• Epilogue: 5 cycles for successful match, 4 for unsuccessful
NOTE: it was confusingly worded whether to count the initial fetch/dispatch. We took both!
char *s1 = “hello world”;

// Case 1

strchridx(s1, ‘h’);

3 + 3 + 5 = 11 cycles if counting initial fetch 3 + 5 = 8 cycles if not
// Case 2

strchridx(s1, ‘d’);

3 + 3 + 4*10 + 5 = 51 cycles if counting initial fetch 3 + 4*10 + 5 = 48 cycles if not
// Case 3

strchridx(s1, ‘q’);

3 + 3 + 4*11 + 4 = 54 cycles if counting initial fetch 3 + 4*11 + 4 = 51 cycles if not

 9

State PseudoCode IdIR
Reg

Sel

Reg

Wr

en

Reg
ldA ldB ALUOp

en

ALU

ld

MA

Mem

Wr

en

Mem

Mem

Size

Imm

Sel

en

Imm
uBr Next State

FETCH0 MA <- PC;

A <- PC;
* PC 0 1 1 * * 0 1 * 0 * * 0 N *

 IR <- Mem 1 * * 0 0 * * 0 0 0 1 * * 0 S *

 PC <- A+4;

dispatch
0 PC 1 1 * * INC_A_4 1 * * 0 * * 0 D *

…

NOP0 uBr to FETCH0 * * * 0 * * * 0 * * 0 * * 0 J FETCH0

STRCHRIDX0 A, MA = rs1 0 rs1 0 1 1 * * 0 1 * 0 * * 0 N *

 B = rs2 0 rs2 0 1 0 1 * 0 0 * 0 * * 0 N *

 rd = A 0 rd 1 1 * 0 * 0 0 * 0 * * 0 N *

loop A = Mem 0 * * 0 1 0 * 0 0 0 1 0 * 0 S *

 µbeq A, 0, fail 0 * note note 0 0 COPY_A note * note note * * note EZ fail

µbeq A, B, match

A = rd
0 rd 0 1 1 0 SUB 0 * * 0 * * 0 EZ match

µjump loop

MA, rd = A+1
0 rd 1 1 * 0 INC_A_1 1 1 * 0 * * 0 J loop

fail A = 0 0 * * 0 1 * * 0 * * 0 * zero 1 N *

µjump FETCH0

rd = A-1
* rd 1 1 * * DEC_A_1 1 * * 0 * * 0 J FETCH0

match B = rs1 0 rs1 0 1 0 1 * 0 * * 0 * * 0 N *

µjump FETCH0

rd = A-B
* rd 1 1 * * SUB 1 * * 0 * * 0 J FETCH0

 10

Problem 3: (15 Points) 5-Stage Pipelines (CS152 ONLY)

3.A (2 Points) Speculation in the 5-stage pipeline
Even a simple, in-order pipelined processor makes use of speculative execution. For the 5-stage
pipeline above, assume that there is no virtual memory, and that misaligned accesses are checked
in the Execute stage. For the instruction sequence below, complete the execution diagram and
circle the cycles in which the second add is being executed speculatively. Justify your response!

Clock Cycle 0 1 2 3 4 5 6 7 8 9

add x1, x2, x0 F D X M W
lw x3, 0(x2) F D X M W
add x3, x4, x5 F D X M W

Speculative execution highlighted.

• It is speculative until it is known that neither the add nor either preceding instruction will
cause an exception.

• The lw can except through the end of the Execute stage, so any execution of following
instructions is speculative while the lw is in the Fetch, Decode, or Execute stages.

• The add cannot except after it is decoded, as there are no arithmetic condition exceptions
in RISC-V

F D X M W

load_data_M

alu_out_W

+4

alu_out_M

load_data_W

M

L1 D$

X

D

Register File

L1 I$

PC

ALU

Bypass M
ux

Bypass M
ux

W

W
B Data M

ux

addr
wdata

BP2

BP4

Misaligned
Addr

Exception

BP3

BP1-4 are existing sources of
bypass data for bypass muxes

BP1

 11

3.B (1 Point) Load-use delay
Given the 5-stage pipeline above, how long is the load-use delay? Answer in terms of how many
bubbles must be added between a load and a dependent register-register instruction that is
fetched right after the load.
One bubble must be added; this means that the load-use delay is one cycle.

3.C (4 Points) Modifying the load-use delay

Consider the bypass path shown in bold below.

How would this bypass path affect CPI? Seconds per cycle?

• The bypass path would decrease CPI, as no bubbles would need to be added between
loads and immediately following instructions depending on the load data.

• Seconds/cycle would increase dramatically, as it nearly merges two stages into one.
Would you recommend adding this bypass path? Justify your response.
This is a bad bypass path. In the best case, it saves a cycle when using load data in the instruction
immediately following a load. Given the theoretical best CPI of 1 in the 5-stage pipeline, this
represents a 100% maximum theoretical improvement, even in an unrealistically optimistic
scenario, such as executing the following code with a single-cycle magic memory. Even in this
unrealistic “best case,” the seconds/cycle penalty would erode all the gains.

lw x2, 4(x2) # unrealistic linked-list pointer chase example
lw x2, 4(x2)
...

F D X M W

load_data_M

alu_out_W

+4

alu_out_M

load_data_W

M

L1 D$

X

D

Register File

L1 I$

PC

ALU

Bypass M
ux

Bypass M
ux

W

W
B Data M

ux

addr
wdata

BP2

BP4

Misaligned
Addr

Exception

BP3

BP1

BP5: extra bypass path to X

Bypass M
ux

Bypass M
ux

 12

3.D (2 Points) RAW hazards through memory

Consider the following instruction sequence.
sw x1, 0(x2)

lw x3, 0(x2)

Assume a “magic memory” that reads and writes in a single cycle, along with the same baseline
microarchitecture from 2.A. Draw a pipeline execution diagram and depict the RAW dependency
with an arrow. Should any bubbles be inserted for correct execution? How many?

Clock Cycle 0 1 2 3 4 5 6 7 8 9

add x4, x4, x5 F D X M W
sw x1, 0(x2) F D X M W
lw x3, 0(x2) F D X M W

No bubbles! A few different arrow drawings were accepted (see rubric).

3.E (6 points) Multi-cycle writes

Now consider a slightly more realistic memory system with caches. These parameters are used
throughout all of (2.D). Cache misses are ignored throughout this question.

• L1 cache read hits complete in a single cycle
• L1 cache writes have a two cycle latency to complete
• L1 Reads and writes still only have a single cycle occupancy

When reusing the existing pipelined datapath with this new cache, no new structural hazards are
added, as the write occupancy is still one cycle. Therefore, this baseline datapath can
accommodate the two-cycle write with no extra pipeline stages.

i) Describe a new type of hazard that will need to addressed in the pipeline and give an
example instruction sequence that will cause such a hazard to occur.

The RAW hazard through memory from a load following a store to the same address will need to
be explicitly detected by the pipeline.
sw x1, 0(x2)
lw x3, 0(x2)

 13

ii) Using the above diagram as a template, draw a new interlock that makes the following
instruction sequence execute correctly. You may add new gates and/or basic arithmetic
units (adders, comparators, etc). For full credit, minimize the overall impact on CPI. Wire
the Boolean interlock signal to one or more of the bubble_<stage> signals, which insert
a bubble in that stage on the current cycle; this bubble ends up ahead of the instruction
that was in that stage. You may use labeled endpoints as “tunnels” to neatly connect wires
without clutter. How many bubbles does it add for the following sequence?

sw x1, 0(x2)

lw x3, 0(x2)

It adds one bubble.

F D X M W

store_data_M

is_load_M
is_store_M

store_data_W

is_load_W
is_store_W

is_load_X
is_store_X

load_data_M

alu_out_W

+4

alu_out_M

load_data_W

M

L1 D$

X

D

R
egister File

L1 I$

PC

ALU

Bypass M
ux

Bypass M
ux

W

W
B Data M

ux

addr
wdata

BP2

BP4

Misaligned
Addr

Exception

BP3

BP1

ad
dr

Eq

== addrEq

Hazard & Bubble Controller

bubble_X bubble_M

 14

iii) Using the above diagram as a template, draw a new bypass path that makes the
following instruction sequence execute correctly with zero bubbles. You may add new gates
and/or basic arithmetic units (adders, comparators, etc). You may also add muxes on an
existing wire by drawing the mux over the wire. You may use labeled endpoints as
“tunnels” to neatly connect wires without clutter.

sw x1, 0(x2)

lw x3, 0(x2)

There are multiple solutions. The one above is the simplest given the pre-supplied pipeline
registers from the diagram.

F D X M W

store_data_M

is_load_M
is_store_M

store_data_W

is_load_W
is_store_W

is_load_X
is_store_X

load_data_M

alu_out_W

+4

alu_out_M

load_data_W

M

L1 D$

X

D

Register File

L1 I$

PC

ALU

Bypass M
ux

Bypass M
ux

W

W
B Data M

ux

addr
wdata

BP2

BP4

Misaligned
Addr

Exception

BP3

BP1

ad
dr

Eq

== addrEq

bypassSD

Bypass M
ux

0 1

bypassSD

Bypass
0 1sum

Example: muxing existing wire with
tunneled, named signal. New items in bold.

 15

Problem 4: (15 Points) Software Optimization (CS152 ONLY)

In this problem, we’ll consider SAXPY kernel operating on 32-bit integer values:

for (i = 0; i < len; i++) {
 y[i] = a * x[i]+ y[i]
}

In this question, we’ll study the performance of this kernel on two different
microarchitectures. Specifically, we’re interested in both the CPI and how many cycles-per-
element (CPE) the kernel takes to execute.

Consider the following RV32IM assembly implementation of this kernel:

// x1 holds pointer to x
// x2 holds pointer to y
// x3 holds a
// x4 holds len

 add x5, x0, x0
LOOP: bge x5, x4, DONE
 lw x6, 0(x1)
 mul x6, x6, x3
 lw x7, 0(x2)
 add x6, x6, x7
 sw x6, 0(x2)
 addi x1, x1, #4
 addi x2, x2, #4
 addi x5, x5, #1
 j LOOP
DONE:

• (1 Point) How many instruction bytes are fetched per loop iteration?

(10 instructions / iteration) * (4B / instruction) = 40 bytes

• (1 Point) How many data bytes are loaded per loop iteration?

2 lw instructions = 8 bytes loaded

 16

• (8 Points) Fill out the provided pipeline diagram on page 15 for a classic 5-stage in-order
pipeline with full-bypassing, for the first 12 dynamic instructions. Assume no cache
misses, and no branch prediction, and len > 2. Note that unconditional branches are
resolved in D. What does CPI converge to as we increase the number of iterations
executed? CPE? You may need to wrap instructions back around to cycle 0 in the
pipeline diagram.

CPI converges to 1.3, which is equivalent to CPE = 13, as there are 10 instructions per iteration.

F D X M W

load_data_M

alu_out_W

+4

alu_out_M

load_data_W

M

L1 D$

X

D

Register File

L1 I$

PC

ALU

Bypass M
ux

Bypass M
ux

W

W
B Data M

ux

addr
wdata

BP2

BP4

Misaligned
Addr

Exception

BP3

BP1-4 are existing sources of
bypass data for bypass muxes

BP1

 17

 bge x5, x4, DONE

j LOOP

addi x5, x5, #1

addi x2, x2, #4

addi x1, x1, #4

sw x6, 0(x2)

add x6, x6, x7

lw x7, 0(x2)

mul x6, x6, x3

lw x6, 0(x1)

bge x5, x4, DONE

add x5, x0, x0

Cycle

 F 0

 F D

1

 F D

X

2

 F D

X

M

3

 F D

X

M

W

4

 F D

M

W

 5

 F D

X

W

 6

 F D

X

M

 7

 F D

M

W

 8

 F D

X

W

 9

 F D

X

M

 1
0

 F D

X

M

W

 1
1

 F D

X

M

W

 1
2

 D

X

M

W

 1
3

F X

M

W

 1
4

D

M

W

 1
5

X

W

 1
6

M

 1
7

W

 1
8

 1
9

 2
0

 2
1

 2
2

 2
3

 18

• (3 Points) Give a reordering of the assembly that achieves a lower CPE, without adding

new instructions. What is the CPE of the reordering?

 add x5, x0, x0
LOOP: bge x5, x4, DONE
 lw x6, 0(x1)
 lw x7, 0(x2)

mul x6, x6, x3
 add x6, x6, x7
 sw x6, 0(x2)
 addi x1, x1, #4
 addi x2, x2, #4
 addi x5, x5, #1
 j LOOP
DONE:

By moving the consumer of each load to be at least two instructions after the load, we
avoid taking bubbles on load-use delays. However, we still take one bubble from the
control hazard on the unconditional jump at the end of the loop, so the iteration takes 11
cycles.

CPE = 11
CPI = 1.1

• (2 Points) Name two other optimizations you could employ to improve the CPE
(assuming you could completely rewrite the assembly implementation). Explain why they
would reduce CPE for the provided kernel. You do not have to write the code in this part.

There are several potential answers. Two good answers are listed below.

a. Unrolling the loop: this would reduce the number of bubbles taken by the control
hazard from the unconditional jump, but more importantly, it would allow the
pointers and index to be incremented half as frequently, cutting the number of
instructions (and therefore cycles) per iteration.

b. Calculate the pointer of x[len] and put it in x4 before starting the loop, and use
this as a loop bound by changing the branch to bge x1, x4, done. This
allows us to remove the addi x5, x5, #1 instruction.

One intuitive but incorrect answer is to delete the existing branch & jump and replace
them single conditional backwards branch. This cuts the instruction count, but actually
incurs a one-cycle longer branch penalty at the end of the loop due to the later resolution
of conditional branches. Therefore, this change doesn’t actually affect the value that CPE
converges to as the vector gets infinitely long. Now, if we did have branch prediction this
would be a very sensible optimization.

 19

Problem 5: (15 Points) Virtual Memory and Aliasing

A) (2 Points) You are asked to design a virtually indexed, physically tagged cache. A page
is 4096 bytes. The cache must have 64 lines of 256 bytes each. What associativity must
the cache have in order for there to be no aliasing?

(64 = 26) * (256 = 28) = 214 bytes in the cache

Each way can be no bigger than the page size to avoid the potential for aliasing in a
virtually-indexed, physically-tagged cache. This is due to the fact that all of the index bits
must come from the page offset.

Therefore, minimum	associativity = 	 ./.01	23415/61	2341 = 	

789
78: = 27 = 4-way set associative.

B) (3 Points) Assume the cache is direct-mapped, and suppose an alias exists for the
physical address 0x80007100. Which sets in the L1 could contain the aliased entry? The
sets are indexed starting from zero.

Tag = addr[31:14] VPN, PPN = addr[31:12]
Index = addr[13:8] Page Offset = addr[11:0]
Offset = addr[7:0]

Therefore, bits [13:12] of the address represent the part of the index that comes from the
virtual page number, which means that they are the only bits that will differ among
aliases of the same line in the cache. These are the top two bits of the index.

Address 0x80007100 lives in index 0x31 in the cache. Since the top two bits of the index
are from the VPN, not the PPN, the same physical line could map to indices 0x01, 0x11,
0x21, or 0x31.

 20

C) (2 Points) To detect aliases, suppose we implement a table which has a single row per L1
cache line. Its structure is given below:

On a miss in the L1 cache, the table is indexed using the physical address bits in positions
corresponding to the cache’s index bits. If the physical tag matches and the entry is valid,
the aliased line is moved into the new set, and the VPN bits in the table are updated.
Otherwise, the L1 line pointed to by the table entry is evicted, and the table entry is
updated with the physical tag and VPN bits of the missing line.

For the cache organization of part B, which bits, if any, of the VPN must be stored in the
table to resolve aliases? Why?

In order to determine which set the pre-existing alias lives in, you need to be able to
complete its index. The bottom four bits of the index (addr[11:8]) come from the
page offset, so they match those of the newly-accessed virtual address. Therefore, we
only need the top two bits of the virtual index, which come from the bottom two bits of
the VPN.

VPN[1:0], which is VAddr[13:12]

D) (3 Points) Suppose we want to load from two 4KiB arrays. First, we load every entry
from foo, which is stored at virtual address 0x8000_0000, and then every entry from
bar, which is stored at virtual address 0x8000_1000. If virtual addresses 0x8000_0000
and 0x8000_1000 map to physical addresses 0x3000 and 0x7000 respectively, how many
bytes of foo will reside in L1 cache once we’ve finished loading from bar? Explain.

Since the physical address ranges of foo and bar do not overlap, there will be no
aliases. However, the problem is that our alias table is direct-mapped based off the six
physical address bits (PAddr[13:8]) in positions corresponding to the cache’s index
bits. Element zero of foo and element zero of bar have physical addresses have
matching values of those six bits: 0x30. Therefore, they will collide in the alias resolution
table, which does not have the capacity to consistently maintain both entries, even though

ValidVPN[?:?]Phys.Tag

=

Alias Set
 Index

Alias
Exists

Miss Physical Address

Block Offset (8 bits)Tag (18 bits) Table Index (6 bits)

 21

they do not have matching physical tags and therefore are not aliases. This would require
one to be evicted, even though the lines’ virtual indices do not conflict!

The effect is that every first access to a line in bar evicts the corresponding line in foo,
even though they occupy different sets in the cache. This means that zero bytes of foo
will reside in the cache once we’ve finished loading from bar.

E) (5 Points) To fix this, we could make the table associative. How many ways would you
add and how many rows would you need to ensure you can always resolve aliases while
completely removing the behavior of part D? Explain.

The goal is to allow multiple distinct lines (non-matching physical tags) to be tracked at
the same physical index in the alias resolution table. Since there are four sets that could
hold these lines per Q5.B, we only need to hold 4 entries to ensure that we do not create
artificial conflicts. Therefore, we would need four ways.

Secondly, if we kept the row count the same, we’d have 4x more entries (rows *
associativity) than lines in our L1 cache. And since the sets that would alias are the only
four sets the share their block offset, we can just use the block offset to index into the
table à we can use ¼ as many rows.

Comments:

One way to think about this solution is that we’ve built an auxiliary, 4-way set-
associative, L1 cache to “simulate” how a well-behaved VIPT L1 cache would behave.
It has the same dimensions as the alias-free VIPT cache in part A, it just doesn’t store the
data.

Any larger table with the same associativity would work just fine. If you just suggested
increasing associativity without decreasing the number of lines, you’d have something
that would look very similar to the tag array of inclusive, 64KiB L2 cache. This was the
scheme mentioned in class for resolving aliases.

