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CS 152 Computer Architecture and Engineering 
CS 252 Graduate Computer Architecture 

 
Midterm #1 

March 4th, 2019 
SOLUTIONS 

 
Name:______________________ 
SID:______________________ 

I am taking CS152 / CS252 
(circle one) 

 
This is a closed book, closed notes exam. 

80 Minutes, 19 pages. 
 

Notes: 
• Not all questions are of equal difficulty, so look over the entire exam! 
• Please carefully state any assumptions you make. 
• Please write your name on every page in the exam. 
• Do not discuss the exam with other students who haven’t taken the exam. 
• If you have inadvertently been exposed to an exam prior to taking it, you 

must tell the instructor or TA. 
• You will receive no credit for selecting multiple-choice answers without 

giving explanations if the instructions ask you to explain your choice. 
 

Question CS152 Point Value CS252 Point Value 
1 15 15 
2 20 -- 
3 15 -- 
4 15 -- 
5 15 15 

Grad Supplement -- 50 
TOTAL 80 80 
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Problem 1: (15 Points) Iron Law of Processor Performance 
 
Mark whether the following modifications will cause each of the first three categories to 
increase, decrease, or whether the modification will have negligible effect. Assume all other 
parameters of the system are unchanged whenever possible. Explain your reasoning. 
 
For the final column “Execution Time”, mark whether the following modifications increase, 
decrease, have negligible effect, or whether the modification will have a potentially significant 
but ambiguous effect. Explain your reasoning. If the modification has an ambiguous effect, 
describe the tradeoff in which it would be a significantly beneficial modification or in which it 
would a significantly detrimental modification (i.e., as an engineer would you suggest using the 
modification or not and why?). 
 
 
  Instructions / 

Program 
Cycles / Instruction Seconds / Cycle Execution Time 

a) 

Improving 
branch 
predictor 
accuracy.  

Negligible 
 
Branch predictors 
are not part of the 
ISA, so they are not 
visible to software. 

Decrease 
 
There will be fewer 
cases where bubbles 
are inserted to 
recover from a 
mispredicted 
branch. 

Negligible 
 
No 
implementation 
details are 
specified, so it 
could just be a 
more efficient 
history model.  

Decrease 
 
The CPI 
advantage will be 
large, especially 
for a complex 
machine, making 
this a very 
positive change. 
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b) 

 
Adding a 
vector (SIMD) 
extension to the 
ISA 
 

Decrease 
 
Each instruction 
does more work, so 
fewer instructions 
are required to 
express a given 
algorithm, assuming 
there is some data-
level parallelism. 

Increase 
 
Instructions can 
have more than one 
load / store / cache 
miss each. 
 
Also, many easily-
parallelizable 
instructions that 
would have 
otherwise had very 
low CPI can be 
merged into one 
instruction, so a 
higher portion of the 
remaining 
instructions will 
contain control and 
data hazards, raising 
CPI. This second 
factor shows that the 
CPI increase is 
basically 
guaranteed. 

Increase 
 
One of the most 
impactful changes 
on cycle time 
would be adding 
wider register 
files to read out 
SIMD registers. 
This likely has an 
even bigger 
impact than the 
parallel ALUs. 
 
OR 
 
Negligible 
 
New hardware is 
intrinsically 
parallel  

Decrease 
 
Data-level 
parallelism that 
can be expressed 
as short vectors is 
ubiquitous, so it is 
nearly certain that 
the Instructions / 
Program 
advantage will 
outweigh the 
drawbacks. 
 
Note that the CPI 
drawback only 
applies if you use 
the SIMD 
instructions, and 
using a SIMD 
instruction is still 
a win over the 
instruction it 
replaces. 

c) 
Adding an 
explicit load-
delay slot.  

Increase 
 
NOPs must be 
added wherever the 
slot cannot be filled 
with an instruction 
not needing the load 
data. 

Decrease 
 
No bubbles need to 
be inserted to cover 
load-use delays. 

Negligible 
 
This simplifies 
the control, but 
the baseline is 
likely to resolve 
back-to-back 
load-use hazards 
with bubbles, not 
exceptionally long 
bypass paths. 

Ambiguous 
 
Program and 
microarchitecture 
dependent.  
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d) 

Adding 
software-
prefetching 
instructions. 

Increase 
 
The software 
prefetching 
instructions must be 
added, which 
increases static and 
dynamic instruction 
count. 

Decrease 
 
Software prefetch 
instructions execute 
quickly, since they 
don’t block, and 
ideally will prevent 
long stalls that wait 
for memory. 

Negligible 
 
Software 
prefetches are no 
more expensive to 
implement than 
loads from a 
microarchitectural 
implementation 
perspective, so 
they won’t slow 
the pipeline. 
 
OR 
 
Increase: 
More instructions 
means more 
complexity and 
delay in complex 
implementations 
due to control 
cost. 

Ambiguous 
 
The cache 
pressure and 
performance hit 
from the extra 
instructions may 
outweigh the 
benefit, given 
how hard it is to 
software prefetch 
correctly. 
 
OR 
 
Decrease, (under 
assumption they 
are being used 
effectively)  
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e) 

Adding another 
level in the 
page-table 
hierarchy. 
  

Negligible, 
assuming a 
hardware page table 
walker. 
 
OR  
 
Increase, if there is 
a software page 
table walker or even 
with a HWPT 
walker if taking 
frequent page faults.  

Increase 
 
TLB misses take 
longer to handle, 
because they 
involve more 
memory accesses. 

Negligible 
 
Traversing an 
extra level of the 
hierarchy takes 
more cycles, but 
is not going to 
meaningfully 
increase the delay 
or complexity of 
the circuits that 
handle TLB 
misses. 

Decrease 
 
A deeper 
hierarchy slows 
TLB misses, 
while the 
advantages of a 
deeper page-table 
hierarchy are not 
in program 
execution time. 
 
Actual 
advantages: 
 
Freeing up 
physical address 
space for a 
constant virtual 
address length.  

OR 
Accommodating a 
larger virtual 
address space. 
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Problem 2: (20 Points) Microcoding (CS152 ONLY) 
 
In this problem, we explore microprogramming by writing microcode for a bus-based 
implementation of the RISC-V machine. This microarchitecture is largely the same as the one 
described in Handout #1, Problem Set 1, and Lab 2, with a few key differences. For clarity, we 
have reproduced the full microarchitectural diagram with new control signals in boldface. 

 
New control signals 

• ImmSel may take the value zero; this puts a zero on the bus when enImm is high 

• Memory now receives an additional MemSize control signal, which takes the value 0, 1, 
or 2 to mean a 8-, 16-, or 32-bit load or store. Assume that load values are zero-extended, 
and that the upper bits are ignored when performing stores of less than 32 bits. 

• Memory may take multiple cycles to return—make sure to use spin states! 
The final solution should be efficient with respect to the number of microinstructions used. Make 
sure to use logical descriptions of data movement in the “pseudocode” column for clarity. Credit 
will be awarded for realizing that signals may take a “don’t care” or X value, but this is less 
important than producing a correct implementation! 
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A Cheat Sheet for the Bus-based RISC-V Implementation 
For your reference, we’ve also included the actual bus-based datapath as well as rehash of some 
important information about microprogramming in the bus-based architecture. 
Remember that you can use the following ALU operations: 
 

ALUOp ALU Result Output 
COPY_A A 
COPY_B B 
INC_A_1 A+1 
DEC_A_1 A-1 
INC_A_4 A+4 
DEC_A_4 A-4 
ADD A+B 
SUB A-B 
SLT Signed(A) < Signed(B) 
SLTU A < B 
Table H1-2: Available ALU operations 

 
Remember that the µBr (microbranch) column in Table H1-3 represents a 3-
bit field with six possible values: N, J, EZ, NZ, D, and S. 

• If µBr is N (next), then the next state is simply (current state + 1).  
• If it is J (jump), then the next state is unconditionally the state specified in the Next State 

column (i.e., it’s an unconditional microbranch).  
• If it is EZ (branch-if-equal-zero), then the next state depends on the value of the ALU’s 

zero output signal (i.e., it’s a conditional microbranch). If zero is asserted (== 1), then the 
next state is that specified in the Next State column, otherwise, it is (current state + 1). 

• NZ (branch-if-not-zero) behaves exactly like EZ, but instead performs a microbranch if 
zero is not asserted (!= 1). 

• If µBr is D (dispatch), then the FSM looks at the opcode and function fields in the IR and 
goes into the corresponding state. 

• If µBr is S, the µPC spins if busy? is asserted, otherwise goes to (current state +1). 
 
 
Guidelines for enable signals: 

• Only one source of data can drive the bus in any cycle 
• Don’t worry about marking any of the en__ signals as don’t care. However, other types 

of signals should be marked as don’t care where applicable. 
• Two control signals determine how the register file is used during a cycle: RegWr and 

enReg. RegWr determines whether the operation to be performed, if any, is a read or a 
write. If RegWr is 1, then it is a write; otherwise it’s a read. enReg is a general enable 
control for the register file. If enReg is 1, then the register reads or writes depending on 
RegWr. If enReg is 0, then nothing is done, regardless of the value of RegWr. 

• MemWr and enMem function in an analogous way for the memory. 
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2.A (15 points) Implement a strchridx instruction 
Given a string of single-byte characters, find the first occurrence of a specified character. Return 
the index of the first occurrence or -1 if the character does not appear in the string. If bits [31:8] 
of rs2 are not all zero, the behavior of the instruction is undefined. When the instruction commits, 
rs1 and rs2 (and all other architectural registers other than rd) must have their original values! 

strchridx rd, rs1, rs2 

Arguments: rs1 A pointer to the null-terminated string s 

 rs2 The character c to search for 

Result: rd The index of the first appearance of c in s, or -1 if it doesn’t appear 

For simplicity, you may assume that rd != rs1. 

Fill in the microcode table on the next page. 
 

1.B (5 Points) Performance of your strchridx implementation 
How many cycles does your strchridx instruction take for each of the following inputs? 
Assume that all memory accesses complete in a single cycle (just for the CPI calculation – i.e., 
you must still use spin states). Include all the cycles from executing STRCHRIDX0 to the 
instruction that jumps back to FETCH0. 
For the implementation on the next page: 

• Fetch/dispatch: 3 cycles 

• Prologue: 3 cycles 

• Iterations: 4 cycles per unmatched character 

• Epilogue: 5 cycles for successful match, 4 for unsuccessful 
NOTE: it was confusingly worded whether to count the initial fetch/dispatch. We took both! 
char *s1 = “hello world”; 

// Case 1 

strchridx(s1, ‘h’); 

3 + 3 + 5 = 11 cycles if counting initial fetch   3 + 5 = 8 cycles if not 
// Case 2 

strchridx(s1, ‘d’); 

3 + 3 + 4*10 + 5 = 51 cycles if counting initial fetch  3  + 4*10 + 5 = 48 cycles if not 
// Case 3 

strchridx(s1, ‘q’); 

3 + 3 + 4*11 + 4 = 54 cycles if counting initial fetch  3 + 4*11 + 4 = 51 cycles if not
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State PseudoCode IdIR 
Reg 

Sel 

Reg 

Wr 

en 

Reg 
ldA ldB ALUOp 

en 

ALU 

ld 

MA 

Mem 

Wr 

en 

Mem 

Mem 

Size 

Imm 

Sel 

en 

Imm 
uBr Next State 

FETCH0 MA <- PC; 

A <- PC; 
* PC 0 1 1 * * 0 1 * 0 * * 0 N * 

 IR <- Mem 1 * * 0 0 * * 0 0 0 1 * * 0 S * 

 PC <- A+4; 

dispatch 
0 PC 1 1 * * INC_A_4 1 * * 0 * * 0 D * 

…                  

NOP0 uBr to FETCH0 * * * 0 * * * 0 * * 0 * * 0 J FETCH0 

STRCHRIDX0 A, MA = rs1 0 rs1 0 1 1 * * 0 1 * 0 * * 0 N * 

 B = rs2 0 rs2 0 1 0 1 * 0 0 * 0 * * 0 N * 

 rd = A 0 rd 1 1 * 0 * 0 0 * 0 * * 0 N * 

loop A = Mem 0 * * 0 1 0 * 0 0 0 1 0 * 0 S * 

 µbeq A, 0, fail 0 * note note 0 0 COPY_A note * note note * * note EZ fail 

 
µbeq A, B, match 

A = rd 
0 rd 0 1 1 0 SUB 0 * * 0 * * 0 EZ match 

 
µjump loop 

MA, rd = A+1 
0 rd 1 1 * 0 INC_A_1 1 1 * 0 * * 0 J loop 

fail A = 0 0 * * 0 1 * * 0 * * 0 * zero 1 N * 

 
µjump FETCH0 

rd = A-1 
* rd 1 1 * * DEC_A_1 1 * * 0 * * 0 J FETCH0 

match B = rs1 0 rs1 0 1 0 1 * 0 * * 0 * * 0 N * 

 
µjump FETCH0 

rd = A-B 
* rd 1 1 * * SUB 1 * * 0 * * 0 J FETCH0 
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Problem 3: (15 Points) 5-Stage Pipelines (CS152 ONLY) 
 

 
 

3.A (2 Points) Speculation in the 5-stage pipeline 
Even a simple, in-order pipelined processor makes use of speculative execution. For the 5-stage 
pipeline above, assume that there is no virtual memory, and that misaligned accesses are checked 
in the Execute stage. For the instruction sequence below, complete the execution diagram and 
circle the cycles in which the second add is being executed speculatively. Justify your response! 

Clock Cycle 0 1 2 3 4 5 6 7 8 9 

add x1, x2, x0 F D X M W      
lw x3, 0(x2)  F D X M W     
add x3, x4, x5   F D X M W    

 
Speculative execution highlighted. 

• It is speculative until it is known that neither the add nor either preceding instruction will 
cause an exception. 

• The lw can except through the end of the Execute stage, so any execution of following 
instructions is speculative while the lw is in the Fetch, Decode, or Execute stages. 

• The add cannot except after it is decoded, as there are no arithmetic condition exceptions 
in RISC-V 

F D X M W

load_data_M

alu_out_W

+4

alu_out_M

load_data_W

M

L1 D$

X

D

Register File

L1 I$

PC

ALU

Bypass M
ux

Bypass M
ux

W

W
B Data M

ux

addr
wdata

BP2

BP4

Misaligned
Addr

Exception

BP3

BP1-4 are existing sources of 
bypass data for bypass muxes

BP1
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3.B (1 Point) Load-use delay 
Given the 5-stage pipeline above, how long is the load-use delay? Answer in terms of how many 
bubbles must be added between a load and a dependent register-register instruction that is 
fetched right after the load. 
One bubble must be added; this means that the load-use delay is one cycle.  

 

3.C (4 Points) Modifying the load-use delay 

Consider the bypass path shown in bold below. 

 
How would this bypass path affect CPI? Seconds per cycle? 

• The bypass path would decrease CPI, as no bubbles would need to be added between 
loads and immediately following instructions depending on the load data. 

• Seconds/cycle would increase dramatically, as it nearly merges two stages into one. 
Would you recommend adding this bypass path? Justify your response. 
This is a bad bypass path. In the best case, it saves a cycle when using load data in the instruction 
immediately following a load. Given the theoretical best CPI of 1 in the 5-stage pipeline, this 
represents a 100% maximum theoretical improvement, even in an unrealistically optimistic 
scenario, such as executing the following code with a single-cycle magic memory. Even in this 
unrealistic “best case,” the seconds/cycle penalty would erode all the gains. 
 
lw x2, 4(x2) # unrealistic linked-list pointer chase example 
lw x2, 4(x2) 
... 

F D X M W

load_data_M

alu_out_W

+4

alu_out_M

load_data_W

M

L1 D$

X

D

Register File

L1 I$

PC

ALU

Bypass M
ux

Bypass M
ux

W

W
B Data M

ux

addr
wdata

BP2

BP4

Misaligned
Addr

Exception

BP3

BP1

BP5: extra bypass path to X

Bypass M
ux

Bypass M
ux
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3.D (2 Points) RAW hazards through memory 
 
Consider the following instruction sequence. 
sw x1, 0(x2) 

lw x3, 0(x2) 

 
Assume a “magic memory” that reads and writes in a single cycle, along with the same baseline 
microarchitecture from 2.A. Draw a pipeline execution diagram and depict the RAW dependency 
with an arrow. Should any bubbles be inserted for correct execution? How many? 
 

Clock Cycle 0 1 2 3 4 5 6 7 8 9 

add x4, x4, x5 F D X M W      
sw x1, 0(x2)  F D X M W     
lw x3, 0(x2)   F D X M W    

 
No bubbles! A few different arrow drawings were accepted (see rubric). 
 
3.E (6 points) Multi-cycle writes 

 
Now consider a slightly more realistic memory system with caches. These parameters are used 
throughout all of (2.D). Cache misses are ignored throughout this question. 
 

• L1 cache read hits complete in a single cycle 
• L1 cache writes have a two cycle latency to complete 
• L1 Reads and writes still only have a single cycle occupancy 

 
 
When reusing the existing pipelined datapath with this new cache, no new structural hazards are 
added, as the write occupancy is still one cycle. Therefore, this baseline datapath can 
accommodate the two-cycle write with no extra pipeline stages. 
 
 
i) Describe a new type of hazard that will need to addressed in the pipeline and give an 
example instruction sequence that will cause such a hazard to occur. 
 
The RAW hazard through memory from a load following a store to the same address will need to 
be explicitly detected by the pipeline. 
sw x1, 0(x2) 
lw x3, 0(x2) 
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ii) Using the above diagram as a template, draw a new interlock that makes the following 
instruction sequence execute correctly. You may add new gates and/or basic arithmetic 
units (adders, comparators, etc). For full credit, minimize the overall impact on CPI. Wire 
the Boolean interlock signal to one or more of the bubble_<stage> signals, which insert 
a bubble in that stage on the current cycle; this bubble ends up ahead of the instruction 
that was in that stage. You may use labeled endpoints as “tunnels” to neatly connect wires 
without clutter. How many bubbles does it add for the following sequence? 
 
sw x1, 0(x2) 

lw x3, 0(x2) 

It adds one bubble. 

F D X M W

store_data_M

is_load_M
is_store_M

store_data_W

is_load_W
is_store_W

is_load_X
is_store_X

load_data_M

alu_out_W

+4

alu_out_M

load_data_W

M

L1 D$

X

D

R
egister File

L1 I$

PC

ALU

Bypass M
ux

Bypass M
ux

W

W
B Data M

ux

addr
wdata

BP2

BP4

Misaligned
Addr

Exception

BP3

BP1

ad
dr

Eq

== addrEq

Hazard & Bubble Controller

bubble_X bubble_M
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iii) Using the above diagram as a template, draw a new bypass path that makes the 
following instruction sequence execute correctly with zero bubbles. You may add new gates 
and/or basic arithmetic units (adders, comparators, etc). You may also add muxes on an 
existing wire by drawing the mux over the wire. You may use labeled endpoints as 
“tunnels” to neatly connect wires without clutter. 
 
sw x1, 0(x2) 

lw x3, 0(x2) 

There are multiple solutions. The one above is the simplest given the pre-supplied pipeline 
registers from the diagram.  

F D X M W

store_data_M

is_load_M
is_store_M

store_data_W

is_load_W
is_store_W

is_load_X
is_store_X

load_data_M

alu_out_W

+4

alu_out_M

load_data_W

M

L1 D$

X

D

Register File

L1 I$

PC

ALU

Bypass M
ux

Bypass M
ux

W

W
B Data M

ux

addr
wdata

BP2

BP4

Misaligned
Addr

Exception

BP3

BP1

ad
dr

Eq

== addrEq

bypassSD

Bypass M
ux

0            1

bypassSD

Bypass
0         1sum

Example: muxing existing wire with 
tunneled, named signal. New items in bold.
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Problem 4: (15 Points) Software Optimization (CS152 ONLY) 
 
In this problem, we’ll consider SAXPY kernel operating on 32-bit integer values: 
 
for (i = 0; i < len; i++) { 
 y[i] = a * x[i]+ y[i] 
} 
 
In this question, we’ll study the performance of this kernel on two different  
microarchitectures. Specifically, we’re interested in both the CPI and how many cycles-per-
element (CPE) the kernel takes to execute.  
 
Consider the following RV32IM assembly implementation of this kernel: 
 
// x1 holds pointer to x 
// x2 holds pointer to y 
// x3 holds a 
// x4 holds len 
 
  add x5, x0, x0 
LOOP: bge x5, x4, DONE 
  lw x6, 0(x1) 
  mul x6, x6, x3 
  lw x7, 0(x2) 
  add x6, x6, x7 
  sw x6, 0(x2) 
  addi x1, x1, #4 
  addi x2, x2, #4 
  addi x5, x5, #1 
  j LOOP 
DONE:   
 
 

•  (1 Point) How many instruction bytes are fetched per loop iteration? 
 
(10 instructions / iteration) * (4B / instruction) = 40 bytes 
 

 
•  (1 Point) How many data bytes are loaded per loop iteration?  

 
2 lw instructions = 8 bytes loaded 
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• (8 Points) Fill out the provided pipeline diagram on page 15 for a classic 5-stage in-order 
pipeline with full-bypassing, for the first 12 dynamic instructions. Assume no cache 
misses, and no branch prediction, and len > 2. Note that unconditional branches are 
resolved in D. What does CPI converge to as we increase the number of iterations 
executed? CPE? You may need to wrap instructions back around to cycle 0 in the 
pipeline diagram.  

 
 
 
 

 
 

CPI converges to 1.3, which is equivalent to CPE = 13, as there are 10 instructions per iteration. 
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  bge  x5, x4, DONE  

j LOOP 

addi x5, x5, #1 

addi x2, x2, #4 

addi x1, x1, #4 

sw x6, 0(x2) 

add x6, x6, x7 

lw x7, 0(x2) 

mul x6, x6, x3 

lw x6, 0(x1)  

bge x5, x4, DONE   

add x5, x0, x0 

Cycle 

            F 0
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• (3 Points) Give a reordering of the assembly that achieves a lower CPE, without adding 

new instructions. What is the CPE of the reordering?  
 
 
  add x5, x0, x0 
LOOP: bge x5, x4, DONE 
  lw x6, 0(x1) 
  lw x7, 0(x2) 

mul x6, x6, x3 
  add x6, x6, x7 
  sw x6, 0(x2) 
  addi x1, x1, #4 
  addi x2, x2, #4 
  addi x5, x5, #1 
  j LOOP 
DONE:   
 
By moving the consumer of each load to be at least two instructions after the load, we 
avoid taking bubbles on load-use delays. However, we still take one bubble from the 
control hazard on the unconditional jump at the end of the loop, so the iteration takes 11 
cycles. 
 
CPE = 11 
CPI = 1.1 
 
 
 

•  (2 Points) Name two other optimizations you could employ to improve the CPE 
(assuming you could completely rewrite the assembly implementation). Explain why they 
would reduce CPE for the provided kernel. You do not have to write the code in this part. 
 
There are several potential answers. Two good answers are listed below. 

a. Unrolling the loop: this would reduce the number of bubbles taken by the control 
hazard from the unconditional jump, but more importantly, it would allow the 
pointers and index to be incremented half as frequently, cutting the number of 
instructions (and therefore cycles) per iteration. 

b. Calculate the pointer of x[len] and put it in x4 before starting the loop, and use 
this as a loop bound by changing the branch to bge x1, x4, done. This 
allows us to remove the addi x5, x5, #1 instruction. 

 
One intuitive but incorrect answer is to delete the existing branch & jump  and replace 
them single conditional backwards branch. This cuts the instruction count, but actually 
incurs a one-cycle longer branch penalty at the end of the loop due to the later resolution 
of conditional branches. Therefore, this change doesn’t actually affect the value that CPE 
converges to as the vector gets infinitely long. Now, if we did have branch prediction this 
would be a very sensible optimization.  
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Problem 5: (15 Points) Virtual Memory and Aliasing  
 

A) (2 Points) You are asked to design a virtually indexed, physically tagged cache. A page 
is 4096 bytes. The cache must have 64 lines of 256 bytes each. What associativity must 
the cache have in order for there to be no aliasing? 

 
(64 = 26) * (256 = 28) = 214 bytes in the cache 
 
Each way can be no bigger than the page size to avoid the potential for aliasing in a 
virtually-indexed, physically-tagged cache. This is due to the fact that all of the index bits 
must come from the page offset. 
 
Therefore, minimum	associativity = 	 ./.01	23415/61	2341 = 	

789
78: = 27 = 4-way set associative. 

 
 

B) (3 Points) Assume the cache is direct-mapped, and suppose an alias exists for the 
physical address 0x80007100. Which sets in the L1 could contain the aliased entry? The 
sets are indexed starting from zero. 
 
Tag    = addr[31:14]         VPN, PPN    = addr[31:12] 
Index  = addr[13:8]          Page Offset = addr[11:0] 
Offset = addr[7:0] 
 
Therefore, bits [13:12] of the address represent the part of the index that comes from the 
virtual page number, which means that they are the only bits that will differ among 
aliases of the same line in the cache. These are the top two bits of the index. 
 
Address 0x80007100 lives in index 0x31 in the cache. Since the top two bits of the index 
are from the VPN, not the PPN, the same physical line could map to indices 0x01, 0x11, 
0x21, or 0x31. 
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C) (2 Points) To detect aliases, suppose we implement a table which has a single row per L1 
cache line. Its structure is given below:  

 
 

 
 

On a miss in the L1 cache, the table is indexed using the physical address bits in positions 
corresponding to the cache’s index bits. If the physical tag matches and the entry is valid, 
the aliased line is moved into the new set, and the VPN bits in the table are updated. 
Otherwise, the L1 line pointed to by the table entry is evicted, and the table entry is 
updated with the physical tag and VPN bits of the missing line.  
 
For the cache organization of part B, which bits, if any, of the VPN must be stored in the 
table to resolve aliases? Why?  

 
In order to determine which set the pre-existing alias lives in, you need to be able to 
complete its index. The bottom four bits of the index (addr[11:8]) come from the 
page offset, so they match those of the newly-accessed virtual address. Therefore, we 
only need the top two bits of the virtual index, which come from the bottom two bits of 
the VPN. 
 
VPN[1:0], which is VAddr[13:12] 
 

D) (3 Points) Suppose we want to load from two 4KiB arrays. First, we load every entry 
from foo, which is stored at virtual address 0x8000_0000, and then every entry from 
bar, which is stored at virtual address 0x8000_1000. If virtual addresses 0x8000_0000 
and 0x8000_1000 map to physical addresses 0x3000 and 0x7000 respectively, how many 
bytes of foo will reside in L1 cache once we’ve finished loading from bar? Explain.  
 
Since the physical address ranges of foo and bar do not overlap, there will be no 
aliases. However, the problem is that our alias table is direct-mapped based off the six 
physical address bits (PAddr[13:8]) in positions corresponding to the cache’s index 
bits. Element zero of foo and element zero of bar have physical addresses have 
matching values of those six bits: 0x30. Therefore, they will collide in the alias resolution 
table, which does not have the capacity to consistently maintain both entries, even though 

ValidVPN[?:?]Phys.Tag

=

Alias Set
 Index

Alias
Exists

Miss Physical Address

Block Offset (8 bits)Tag (18 bits) Table Index (6 bits)
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they do not have matching physical tags and therefore are not aliases. This would require 
one to be evicted, even though the lines’ virtual indices do not conflict! 
 
The effect is that every first access to a line in bar evicts the corresponding line in foo, 
even though they occupy different sets in the cache. This means that zero bytes of foo 
will reside in the cache once we’ve finished loading from bar. 
 

E) (5 Points) To fix this, we could make the table associative. How many ways would you 
add and how many rows would you need to ensure you can always resolve aliases while 
completely removing the behavior of part D? Explain. 

 
The goal is to allow multiple distinct lines (non-matching physical tags) to be tracked at 
the same physical index in the alias resolution table. Since there are four sets that could 
hold these lines per Q5.B, we only need to hold 4 entries to ensure that we do not create 
artificial conflicts. Therefore, we would need four ways.  
 
Secondly, if we kept the row count the same, we’d have 4x more entries (rows * 
associativity) than lines in our L1 cache. And since the sets that would alias are the only 
four sets the share their block offset, we can just use the block offset to index into the 
table à we can use ¼ as many rows.  
 
Comments:  
 
One way to think about this solution is that we’ve built an auxiliary, 4-way set-
associative, L1 cache to “simulate” how a well-behaved VIPT L1 cache would behave.  
It has the same dimensions as the alias-free VIPT cache in part A, it just doesn’t store the 
data.  
 
Any larger table with the same associativity would work just fine. If you just suggested 
increasing associativity without decreasing the number of lines, you’d have something 
that would look very similar to the tag array of inclusive, 64KiB L2 cache. This was the 
scheme mentioned in class for resolving aliases.  


