
CS 61A Structure and Interpretation of Computer Programs
Spring 2019 Midterm 2

INSTRUCTIONS

� You have 2 hours to complete the exam.

� The exam is closed book, closed notes, closed computer, closed calculator, except two hand-written 8.5" × 11"
crib sheets of your own creation and the o�cial CS 61A study guides.

� Mark your answers on the exam itself. We will not grade answers written on scratch paper.

Last name

First name

Student ID number

CalCentral email (_@berkeley.edu)

TA

Name of the person to your left

Name of the person to your right

All the work on this exam is my own.

(please sign)

POLICIES & CLARIFICATIONS

� If you need to use the restroom, bring your phone and exam to the front of the room.

� You may use built-in Python functions that do not require import, such as min, max, pow, len, abs, sum, next,
iter, list, tuple, map, filter, zip, all, and any.

� You may not use example functions de�ned on your study guides unless a problem clearly states you can.

� For �ll-in-the blank coding problems, we will only grade work written in the provided blanks. You may only
write one Python statement per blank line, and it must be indented to the level that the blank is indented.

� Unless otherwise speci�ed, you are allowed to reference functions de�ned in previous parts of the same question.

� You may use the Tree, Link, and BTree classes de�ned on Page 2 (left column) of the Midterm 2 Study Guide.

http://berkeley.edu

2

1. (12 points) What Would Python Display

For each of the expressions in the table below, write the output displayed by the interactive Python interpreter
when the expression is evaluated. The output may have multiple lines. If an error occurs, write �Error�, but
include all output displayed before the error. If evaluation would run forever, write �Forever�. To display a
function value, write �Function�. The �rst two rows have been provided as examples.

The interactive interpreter displays the value of a successfully evaluated expression, unless it is None.

Assume that you have �rst started python3 and executed the statements on the left.

items, n = [], 2

class Airpods:

cost, k = 200, 0

f = lambda self: print(self)

def __init__(self):

Airpods.k += 1

Airpods.f(self)

items.extend([self])

def __repr__(self):

return (Airpods.k < 2 and "lonely") or "pair"

class TwoAirpods(Airpods):

def __init__(self):

self.k = 2

Airpods.__init__(self)

Airpods.__init__(self)

def discount(a):

a.cost //= 2

def u(w, u):

return [print(u) for u in [w, u]]

discount(Airpods)

Expression Interactive Output

pow(10, 2) 100

print(Link(2, Link(3))) <2, 3>

TwoAirpods.cost

lost = Airpods()

willbelost = TwoAirpods()

str(lost)

[item.k for item in items]

u(lost, willbelost)

Name: 3

2. (10 points) Ultimate

Fill in the environment diagram that results from executing the
code on the right until the entire program is �nished, an error
occurs, or all frames are �lled. You may not need to use all of

the spaces or frames.

A complete answer will:

� Use box-and-pointer notation for all lists.

� Add missing names and parents to all local frames.

� Add missing values created or referenced during execution.

� Show the return value for each local frame.

defeated = ['luigi']
def start():
 chal = 'falco'
 def approach(new_chal):
 nonlocal chal
 defeated.append(chal)
 chal = new_chal
 def revive():
 return defeated.pop()
 return [approach, revive]
gameover = start()[:]
gameover.pop(0)(‘marth')
restart = gameover[0]()

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

Global frame

func approach(new_chal) [parent= ______]

f3: ___________ [parent=____________]

Return Value

func start() [parent=Global]

f2: ___________ [parent=____________]

Return Value

f1: ___________ [parent=____________]

Return Value
func revive() [parent= ______]

4

3. (5 points) Deep lists

Implement in_nested which takes in a value v and a nested list or an individual value L and returns whether
the value is contained in the list.

Hint: The built-in function type takes an object and returns the type of that object.

def in_nested(v, L):

"""

>>> in_nested(5, [1, 2, [[3], 4]])

False

>>> in_nested(9, [[[1], [6, 4, [5, [9]]], 7], 7, 7])

True

>>> in_nested(1, 1)

True

"""

if :

return

else:

return

Name: 5

4. (8 points) A data structure by any other form would smell just as sweet...

(a) (6 pt) Implement link_to_dict which takes a linked list encoding a ��attened� dictionary (in which
elements are key1 → value1 → key2 → value2 → key3 → value3, etc), removes all the values, and
returns the equivalent dictionary. The input and returned list may include duplicate keys, as in the
example below. You may assume the linked list always contains an even number of elements. The Link

class is provided below.

class Link:

empty = ()

def __init__(self, first, rest=empty):

self.first = first

self.rest = rest

def __str__(self):

string = '<'

while self.rest is not Link.empty:

string += str(self.first) + ', '

self = self.rest

return string + str(self.first) + '>'

def link_to_dict(L):

"""

>>> L = Link(1, Link(2, Link(3, Link(4, Link(1, Link(5))))))

>>> print(L)

<1, 2, 3, 4, 1, 5>

>>> link_to_dict(L)

{1: [2, 5], 3: [4]}

>>> print(L)

<1, 3, 1>

"""

D = {}

while :

key, value =

if :

else:

return D

(b) (2 pt) Circle the Θ expression that describes the number of iterations of the while loop in link_to_dict

where n is the length of the list.

Θ(1) Θ(log n) Θ(n) Θ(n2) Θ(2n) None of these

6

5. (10 points) I speak for the Trees

Execute each line of code in order. If a line errors, assume we didn't type that line. For each line, indicate
whether it was:

� (E) an error

� (D) a Data Abstraction Violation

� (OK) perfectly �ne code.

Please �ll in the bubbles completely.

def tree(label, branches=[]):

return [label] + list(branches)

def label(tree):

return tree[0]

def branches(tree):

return tree[1:]

def print_tree_adt(t, indent=0):

print(' ' * indent + str(label(t)))

for b in branches(t):

print_tree_adt(b, indent + 1)

class Tree:

def __init__(self, label, branches=[]):

self.label = label

self.branches = list(branches)

def __str__(self):

return '\n'.join(self.indented())

def indented(self, k=0):

ind = []

for b in self.branches:

for line in b.indented(k + 1):

ind.append(' ' + line)

return [str(self.label)] + ind

E D OK t = Tree(3, [Tree(1), Tree(2)])

E D OK L = [tree(1)]

E D OK L.append(tree(2))

E D OK s = tree(3, L)

E D OK s

E D OK print(s)

E D OK t

E D OK t.label

E D OK print(t)

E D OK label(s)

E D OK t.label = 4

E D OK label(s) = 4

E D OK s[0] = 5

E D OK print_tree_adt([5])

E D OK print_tree_adt(s)

E D OK t.branches[0].label = s

E D OK print_tree_adt(t.branches[0])

E D OK print_tree_adt(t.branches[0].label)

E D OK t

E D OK print(t)

Name: 7

6. (15 points) Trie this

A Trie is a Tree where every node in the tree contains a single letter except for the root which is always the
empty string. Every path from the root to a leaf forms a word. You may assume no words are substrings of
other words in the trie (e.g., �hi� and �him�). The �gure below is a trie generated by storing the words [�this�,
�is�, �the�, �trie�]. The Tree class is de�ned on Page 2 of the Midterm 2 Study Guide.

(a) (7 pt) Implement add_word which takes a Trie and a word and adds the word to the trie.

def make_trie(words):

""" Makes a tree where every node is a letter of a word.

All words end as a leaf of the tree.

words is given as a list of strings.

"""

trie = Tree('')

for word in words:

add_word(trie, word)

return trie

def add_word(trie, word):

if :

return

branch =

for :

if :

branch =

if :

branch =

""

"t" "i"

"h" "r"

"e" "i"

"s"

"s"

"i"

"e"

(b) (8 pt) Implement get_words, which takes a Trie and returns a list of all the words the Trie is storing.

def get_words(trie):

"""

>>> get_words(make_trie(['this', 'is', 'the', 'trie']))

['this', 'the', 'trie', 'is']

"""

if :

return

return sum(, [])

8

No more questions.

