
Physics 7B - Lecture 3 - Midterm 1 - Problem 1 - Solution

For each part, there was only one correct answer. 3 points were awarded for selecting the
correct and only the correct answer. 1 point was awarded for selecting both the correct answer
and one incorrect one. No points were given otherwise.

a) Option c. is correct. The pressure an ideal gas exerts on it’s surroundings is due to the change
in momentum in the molecules as they hit a wall. It is there even in the absence of gravity (so
a. is false ), and would exist even if the molecules did not interact with each other, as long
as they interacted with the wall (so b. is false). The pressure also does not rely on the exact
distribution of velocities (so d. is false), and will be there as long as not all molecules have zero
velocity.

b) Since the gas is ideal, we can apply PV = nRT. We are given that the pressure is halved,
while the volute is doubled. Therefore, the left-hand side of the ideal gas law remains constant,
implying the right-hand side must remain constant as well. Given that n is held constant, we
conclude that RT has not changed as the gas goes from initial to final state.Thus, the internal
energy, which (by equipartition) is 1

2nRT per available degree of freedom, also remains constant,
i.e., the correct answer is a.

c) The freezing of degrees of freedom at low temperatures is due to the existence of discrete energy
levels as predicted by quantum mechanics (option c. is correct). It has nothing to do with
our ability (or lack thereof) to perform a measurement or with collisions (options a. and d.
are incorrect). It leads to a reduction of heat capacities, but is not caused by it (option b. is
incorrect).

d) The correct answer is d. Since no energy is exchanged between the gas and its surroundings, its
total energy (and thus average energy) remains unchanged. Thus, the temperature is constant.
Note that this also means that the distribution of speeds is unchanged. The increase in volume
leads to both longer average time between collisions with the walls, and greater wall area, both
of which lead to a decrease in pressure. Even though no heat is exchanged, this process leads
to an increase in entropy. This is possible because dS = dQ

T only for reversible processes,
and the removal of the barrier is irreversible. Entropy is a state variable, and it’s change can
be computed by ∆S =

∫ dQ
T for a reversible process between the same initial and final state.

Alternatively, from the microscopic description of entropy (as proportional to the log of the
number of microstates corresponding to a given macrostate), it is also clear that the entropy
increases.

The gas is not in equilibrium as it expands, but we were given no information to allow us to
conclude anything about whether it is ideal (part e. is incorrect).
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Q2. 

a) Q/t = KA (100)/L 

Direction: Hotter end to colder end.  

 

b) Q/t = mL, Therefore,  m = Q/t*L (Mass/Time) 

 

c) Thermal Conductivity of Metal (k) is greater than wood. Hence, wood would be worse.  

 



Midterm 1: Problem 3

Problem statement

One mole of an ideal monatomic gas is taken from an initial state (Pi, Vi) to a final state (Pf = 3Pi, Vf =
3Vi).

Find the change in entropy, ∆S, in terms of Pi, Vi, and relevant physical constants for cases (a) and
(b) below. Calculate the entropy change explicitly in both cases.

(a) The gas first expands isothermally until its volume is tripled and then increases pressure at constant
volume until it reaches its final pressure.

(b) The gas first compresses isothermally until its pressure is tripled and then expands at constant
pressure until it reaches its final volume.

(c) Plot these paths on a P -V diagram. Label each part of the manipulation clearly.

Solution

(a) For a reversible process, the relationship between heat and entropy is given by

dS =
dQ

T
.

We will assume that all processes in this problem are reversible.

The first process to consider in case (a) is the isothermal expansion from Vi → 3Vi. The temperature
during this expansion is constant, so the change in entropy is

∆S1 =
1

Ti

∫
dQ =

Q

Ti
,

where Q is the total amount of heat added. From the first law of thermodynamics and the equipar-
tition theorem,

∆U = Q−W, and ∆U =
d

2
nR∆T,

we see that ∆T = 0 =⇒ Q = W . The work done during this expansion is found to be

W =

∫
PdV = nRTi

∫ 3Vi

Vi

dV

V
= nRTi ln 3.

The gas does positive work, so it absorbs positive heat: Q > 0. The change in entropy is also
positive:

∆S1 = nR ln 3.

Lastly, we note that n = 1:
∆S1 = R ln 3.

Next, we consider the isovolumetric process. Because the temperature now varies, the change in
entropy is

∆S2 =

∫
dQ

T
.

Here we can use the relationship
dQ = nCV dT,

where

CV =
d

2
R.
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Setting n = 1 and d = 3 (as is the case for a monatomic ideal gas), we get

∆S2 =
3

2
R

∫ Tf

Ti

dT

T
=

3

2
R ln

(
Tf

Ti

)
.

The ideal gas law tells us that the temperature is proportional to the product PV ; therefore
Tf = 9Ti, and

∆S2 =
3

2
R ln 9 = 3R ln 3.

Finally, the total change in entropy for case (a) is

∆S = ∆S1 + ∆S2 = 4R ln 3.

(b) Because entropy is a state variable and cases (a) and (b) involve the same initial and final states,
the value we calculate for ∆S in part (b) must equal our result from part (a).

During the isothermal compression, the change in entropy is again

∆S1 =
W

Ti
.

This time work is being done on the gas, so W < 0 (as is the change in entropy). The pressure
increases by a factor of 3 during this compression; so by the ideal gas law, the volume must decrease
by a factor of 3:

∆S1 =
1

Ti

∫
PdV = R

∫ Vi/3

Vi

dV

V
= R ln

(
1

3

)
= −R ln 3

(where we’ve already set n = 1).

During the isobaric expansion, we can use the relationship

dQ = CP dT,

where

CP = Cv + R =
5

2
R.

So

∆S2 =

∫
dQ

T
=

5

2
R

∫ Tf

Ti

dT

T
=

5

2
R ln 9 = 5R ln 3.

The total change in entropy is
∆S = ∆S1 + ∆S2 = 4R ln 3,

as it must be.

(c) A rough P -V diagram (not to scale) is shown below. Path a = a1 + a2 is taken counterclockwise
from the initial point to the final point, and path b = b1 + b2 is taken clockwise.

b2

a2

3Pi

3ViVi

Pi

b1

a1
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Physics 7B, Lecture 3, MT1 

Problem 4 Solution 

Part a 

We are asked to express 𝛾𝛾 as a ratio of integers. In general, 𝛾𝛾 = 𝐶𝐶𝑃𝑃
𝐶𝐶𝑉𝑉

, and both 𝐶𝐶𝑃𝑃 and 𝐶𝐶𝑉𝑉 depend 

on the number of degrees of freedom of the gas (d): 𝐶𝐶𝑉𝑉 = 𝑑𝑑
2
 and 𝐶𝐶𝑃𝑃 = 𝐶𝐶𝑉𝑉 + 𝑅𝑅. For a diatomic gas, 

there are 3 translational degrees of freedom, 2 rotational degrees of freedom, and some vibrational 
degrees of freedom (ignored). So here we have 

𝑑𝑑 = 3 + 2 = 5. 

Therefore, 

𝐶𝐶𝑉𝑉 =
5
2
𝑅𝑅,      𝐶𝐶𝑃𝑃 =

5
2
𝑅𝑅 + 𝑅𝑅 =

7
2
𝑅𝑅. 

So, calculating the ratio of the molar specific heats gives us 

𝛾𝛾 =
7
2𝑅𝑅
5
2𝑅𝑅

=
𝟕𝟕
𝟓𝟓

. 
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Part c 

We can see right away that 𝑄𝑄1 = 𝑄𝑄3 = 0 because both these processes are adiabatic. We see also that 
𝑊𝑊2 = 𝑊𝑊4 = 0 because there is no change in volume during these steps. Also, because there is no heat 
transfer during processes 1 and 3, the change in entropy is zero for both these processes. 

𝑊𝑊1 and 𝑊𝑊3 can be calculated using the 1st law of thermodynamics: Δ𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑄𝑄 −𝑊𝑊. We know that 
Δ𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑑𝑑

2
𝑛𝑛𝑅𝑅Δ𝑇𝑇, so we can relate the work to the change in temperature and then rewrite our answer 

in terms of pressure and volume (our known quantities) using the ideal gas law. For process 1, 𝑄𝑄1 =
0, so 

Δ𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖 =
5
2
𝑛𝑛𝑅𝑅Δ𝑇𝑇 =  𝑄𝑄1 −𝑊𝑊1 =  −𝑊𝑊1. 

Plugging in temperatures yields 

−𝑊𝑊1 =
5
2
𝑛𝑛𝑅𝑅(T2 − 𝑇𝑇1). 

Rewriting in terms of pressure and volume using 𝑃𝑃𝑃𝑃 = 𝑛𝑛𝑅𝑅𝑇𝑇 and solving for work gives us 

𝑊𝑊1 = −
5
2

(𝑃𝑃2𝑃𝑃2 − 𝑃𝑃1𝑃𝑃1). 

An analogous calculation for process 3 shows that 

𝑊𝑊3 =  −
5
2

(𝑃𝑃4𝑃𝑃4 − 𝑃𝑃3𝑃𝑃3) =
5
2

(𝑃𝑃3𝑃𝑃2 − 𝑃𝑃4𝑃𝑃1). 

Notice that we have rewritten our answer in terms of our known volumes. To find heat in processes 
2 and 4 we can again use the 1st law of thermodynamics, but this time work is zero and heat is nonzero. 
For process 2, 

Δ𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑄𝑄2 −𝑊𝑊2 = 𝑄𝑄2 − 0 =
5
2
𝑛𝑛𝑅𝑅Δ𝑇𝑇. 

From this we can write the heat in terms of the temperature change, which we can rewrite in terms of 
pressure and volume as we did previously for the work. 

𝑄𝑄2 =
5
2
𝑛𝑛𝑅𝑅(𝑇𝑇3 − 𝑇𝑇2) =

5
2

(𝑃𝑃3𝑃𝑃3 − 𝑃𝑃2𝑃𝑃2) =
5
2
𝑃𝑃2(𝑃𝑃3 − 𝑃𝑃2). 

An analogous calculation for process 4 gives us 

𝑄𝑄4 =
5
2

(𝑃𝑃1𝑃𝑃1 − 𝑃𝑃4𝑃𝑃4) =
5
2
𝑃𝑃1(𝑃𝑃1 − 𝑃𝑃4). 



To calculate the change in entropy over steps 2 and 4, we must integrate because temperature is not 
constant. We note that the heat involved in these steps can be calculated using the molar specific heat 
at constant volume because these are isovolumetric processes. So we need to evaluate 

Δ𝑆𝑆 =  �
𝑑𝑑𝑄𝑄
𝑇𝑇

=  �
𝑛𝑛𝐶𝐶𝑉𝑉
𝑇𝑇

𝑑𝑑𝑇𝑇. 

For process 2, this integral reads 

Δ𝑆𝑆2 =
5
2
𝑛𝑛𝑅𝑅�

1
𝑇𝑇
𝑑𝑑𝑇𝑇 =

5
2
𝑛𝑛𝑅𝑅 ln �

𝑇𝑇3
𝑇𝑇2
�

𝑇𝑇3

𝑇𝑇2
. 

We need to write the ratio of temperatures in terms of known quantities, so we must use the ideal gas 
law to replace the temperatures with pressures and volumes. Doing so yields 

Δ𝑆𝑆2 =
5
2
𝑛𝑛𝑅𝑅 ln�

𝑃𝑃3𝑃𝑃3
𝑛𝑛𝑅𝑅
𝑃𝑃2𝑃𝑃2
𝑛𝑛𝑅𝑅

� =
5
2
𝑛𝑛𝑅𝑅 ln �

𝑃𝑃3
𝑃𝑃2
�. 

Notice that we have canceled the volumes because the process between points 2 and 3 is 
isovolumetric. We can find the change in entropy for step 4 by observing that the total change in 
entropy must add up to zero or by completing an analogous calculation. This shows us that 

Δ𝑆𝑆4 =
5
2
𝑛𝑛𝑅𝑅 ln �

𝑃𝑃1
𝑃𝑃4
� =

5
2
𝑛𝑛𝑅𝑅 ln �

𝑃𝑃2
𝑃𝑃3
�. 

In summary, our results for the table are: 

 W Q Δ𝑆𝑆 
Process 1 (point 1 to 
point 2) 

5
2

(𝑃𝑃1𝑃𝑃1 − 𝑃𝑃2𝑃𝑃2) 
0 0 

Process 2 (2 to 3) 0 5
2
𝑃𝑃2(𝑃𝑃3 − 𝑃𝑃2) 

5
2
𝑛𝑛𝑅𝑅 ln �

𝑃𝑃3
𝑃𝑃2
� 

Process 3 (3 to 4) 5
2

(𝑃𝑃3𝑃𝑃2 − 𝑃𝑃4𝑃𝑃1) 
0 0 

Process 4 (4 to 1) 0 5
2
𝑃𝑃1(𝑃𝑃1 − 𝑃𝑃4) 

5
2
𝑛𝑛𝑅𝑅 ln �

𝑃𝑃2
𝑃𝑃3
� 

 

Each box was worth 1 point. Note that 𝑃𝑃4 = 𝑃𝑃1𝑃𝑃3
𝑃𝑃2

= 𝑃𝑃3 �
𝑉𝑉2
𝑉𝑉1
�
𝛾𝛾
. Solutions written using these 

relationships were also considered correct. 

 

 

 

 



Part d 

The efficiency of a heat engine in general is given by 

𝑒𝑒 = 1 −
𝑄𝑄𝐿𝐿
𝑄𝑄𝐻𝐻

. 

In this case, 𝑄𝑄𝐿𝐿 refers to the heat in process 4 and 𝑄𝑄𝐻𝐻 is that of process 2. (You can determine this by 
seeing which heat is positive and which is negative, which you can see by looking at the differences in 
pressure. The positive heat is 𝑄𝑄𝐻𝐻 and the negative one is 𝑄𝑄𝐿𝐿.) One should be able to calculate the 
efficiency by using the results from the previous part or by writing out the heats in terms of the molar 
specific heat and changes in temperature. We will take the latter approach here: 

 𝑒𝑒 = 1 −
𝑛𝑛𝐶𝐶𝑉𝑉(𝑇𝑇4 − 𝑇𝑇1)
𝑛𝑛𝐶𝐶𝑉𝑉(𝑇𝑇3 − 𝑇𝑇2). 

We want to rewrite this expression in terms of 𝛾𝛾, which shows up in the adiabatic pressure-volume 
relationship: 

𝑃𝑃𝑃𝑃𝛾𝛾 = 𝑐𝑐𝑐𝑐𝑛𝑛𝑐𝑐𝑐𝑐𝑛𝑛𝑐𝑐. 

Our expression for the efficiency is written in terms of temperature, so we will need to combine this 
relationship with the ideal gas law, which connects pressure and temperature. Solving the ideal gas law 
for pressure gives 

𝑃𝑃 =
𝑛𝑛𝑅𝑅𝑇𝑇
𝑃𝑃

, 

which can be inserted into the adiabatic relationship as follows 

�
𝑛𝑛𝑅𝑅𝑇𝑇
𝑃𝑃

�𝑃𝑃𝛾𝛾 = 𝑐𝑐𝑐𝑐𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐𝑛𝑛𝑐𝑐. 

The number of moles and the gas constant are both constant, so we can absorb them into the 
righthand side. This yields a new adiabatic relationship in terms of temperature and volume: 

𝑇𝑇𝑃𝑃𝛾𝛾−1 = 𝑛𝑛𝑒𝑒𝑛𝑛 𝑐𝑐𝑐𝑐𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐𝑛𝑛𝑐𝑐. 

We can apply this relationship to processes 1 and 3, which yields 

𝑇𝑇1𝑃𝑃1
𝛾𝛾−1 = 𝑇𝑇2𝑃𝑃2

𝛾𝛾−1, 

𝑇𝑇3𝑃𝑃3
𝛾𝛾−1 = 𝑇𝑇4𝑃𝑃4

𝛾𝛾−1. 

We can then stick these relationships into our expression for the efficiency to eliminate two of our 
temperatures (here we choose to eliminate 𝑇𝑇1 and 𝑇𝑇4): 

𝑒𝑒 = 1 −
𝑇𝑇3 �

𝑃𝑃3
𝑃𝑃4
�
𝛾𝛾−1

− 𝑇𝑇2 �
𝑃𝑃2
𝑃𝑃1�

𝛾𝛾−1

𝑇𝑇3 − 𝑇𝑇2
. 



We notice that 𝑃𝑃3 = 𝑃𝑃2 and 𝑃𝑃4 = 𝑃𝑃1, so 𝑉𝑉3
𝑉𝑉4

= 𝑉𝑉2
𝑉𝑉1

. This simplifies our expression as follows: 

𝑒𝑒 = 1 −
�𝑃𝑃2𝑃𝑃1

�
𝛾𝛾−1

(𝑇𝑇3 − 𝑇𝑇2)

(𝑇𝑇3 − 𝑇𝑇2) = 1 − �
𝑃𝑃2
𝑃𝑃1
�
𝛾𝛾−1

. 

We are almost there. Now we just need to replace the ratio 𝑉𝑉1
𝑉𝑉2

 with 𝑟𝑟. Doing so and cleaning up our 

answer a bit yields 

𝑒𝑒 = 1 − �
1
𝑟𝑟
�
𝛾𝛾−1 

= 1 − 𝑟𝑟1−𝛾𝛾. 

 

Part e 

Reversible processes are quasistatic (performed very slowly so that they are a series of equilibrium 
states) and involve no nonconservative forces. The performance of this cycle too quickly to be 
quasistatic or with friction forces, as would be the case in a real engine, would make the process 
irreversible. 



Problem 5_Wurtele’s Exam  

a) 
𝑑𝑄

𝑑𝑡
= ∈ 𝜎 (4𝜋𝑅2)(𝑇4 −  34) 𝑤ℎ𝑒𝑟𝑒 𝑇 𝑣𝑎𝑟𝑖𝑒𝑠   

b) 𝑑𝑄 =  −𝑚𝑐𝑑𝑇   𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑔𝑜𝑒𝑠 𝑑𝑜𝑤𝑛 𝑖𝑛 𝑡ℎ𝑒 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 

c) 
𝑑𝑄

𝑑𝑡
= ∈ 𝜎 (4𝜋𝑅2)(𝑇4)     𝐴𝑓𝑡𝑒𝑟 𝑛𝑒𝑔𝑙𝑒𝑐𝑡𝑖𝑛𝑔 𝑡ℎ𝑒 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑜𝑓 𝑒𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡 =

3𝐾 ≈

𝑡𝑒𝑛𝑑𝑠 𝑡𝑜 0                                                                                                                                                                                   
 

−𝑚𝑐 
𝑑𝑇

𝑑𝑡
= ∈ 𝜎 (4𝜋𝑅2)(𝑇4) 

 

−𝑚𝑐

∈ 𝜎 (4𝜋𝑅2)
∫

𝑑𝑇

𝑇4

300

330

= ∫ 𝑑𝑡
𝜏

0

 

 

−𝑚𝑐

∈ 𝜎 (4𝜋𝑅2)
 [

𝑇−4+1

−4 + 1
]

330

300

=  𝜏 

 

𝑚𝑐

3 ∈ 𝜎 (4𝜋𝑅2)
 [

1

𝑇3
]

330

300

=  𝜏  

 
𝑚𝑐

3 ∈ 𝜎 (4𝜋𝑅2)
[

1

3003
−

1

3303
] =  𝜏  𝑅𝑒𝑚𝑒𝑚𝑏𝑒𝑟 𝑡𝑖𝑚𝑒 𝑠ℎ𝑜𝑢𝑙𝑑 𝑏𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 

 

d) Increases 

The rate at which spherical ball radiates heat decreases (dQ/dt goes down) and time to 

cool increases.  
 


