ME 132, Fall 2018, Quiz # 2

15 30	# 2 #
30	#
	ů.
20	# 4
15	#5
	NAME

- 1. Two (2) sheet of notes allowed 8.5×11 inches. Both sides can be used
- 3. No laptops, phones, headphones, pads, tablets, or any other such device may be out. If such a device is seen after 10:10AM, your test will be confiscated, and you will get a 0 for the exam.
- Keep your eyes on your own paper!
- 5. The exam ends promptly at 11:00 AM
- 6. Stop working, and turn in exams when notified.

For complex numbers N and D

 $|ND| = |N| \cdot |D|, \quad \angle(ND) = \angle N + \angle D$

Furthermore, if $D \neq 0$.

$$L\frac{1}{D} = -LD$$

If D is real, and D > 0, then $\angle D = 0$.

1. Consider the
$$2 \times 2$$
 matrix. $A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$

$$u_1 := \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \quad w_2 := \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

 $v_1:=\left[\begin{array}{c}1\\1\end{array}\right], \quad v_2:=\left[\begin{array}{c}1\\-1\end{array}\right]$ are eigenvectors of A, and determine the corresponding eigenvalues, denoted as λ_1 and $\lambda_2.$

$$Av_1 = \lambda_1 v_1 \rightarrow \begin{bmatrix} 0 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix} = \lambda_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} \Rightarrow \lambda_1 = 1$$

$$Av_2 = \lambda_2 v_2 \rightarrow \begin{bmatrix} 0 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \lambda_2 \begin{bmatrix} 1 \\ 1 \end{bmatrix} \Rightarrow \lambda_2 = 1$$

$$\begin{bmatrix} -1 \\ 1 \end{bmatrix} = \lambda_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} \Rightarrow \lambda_2 = 1$$

(b) Find an invertible matrix $V \in \mathbb{R}^{2\times 2}$ and diagonal matrix $\Lambda \in \mathbb{R}^{2\times 2}$ such that $AV = V\Lambda$. V is matrix formed by eigenvectors (as edumoss) Λ is diagonal, with eigenvalues on diagonal

(c) Find the expression for
$$e^{At}$$
.

$$A = V \wedge V - || \cdot || \rightarrow V - || \rightarrow V - || - \frac{1}{2} || \cdot || - \frac{1}{2} || - \frac{1$$

(d) Consider the differential equation $\dot{x}(t) = Ax(t)$ with initial conditions

$$x(0) = \left[\begin{array}{c} 2 \\ 0 \end{array} \right], \quad x(0) = \left[\begin{array}{c} 0 \\ 2 \end{array} \right], \quad x(0) = \left[\begin{array}{c} 2 \\ 2 \end{array} \right], \quad x(0) = \left[\begin{array}{c} 2 \\ -2 \end{array} \right]$$

In the 2-dimensional "phase-plane" below, sketch the solutions for $t \geq 0$, starting from these 4 different initial conditions. Include arrows to show the direction as

2. For the linear system $\dot{x}(t) = Ax(t) + Bu(t)$, the matrices A and B are

$$= \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ -1 & -1 & 0 \end{bmatrix}, \quad B = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$

(a) Consider a state-feedback, u(t) = Kx(t), where $K = [K_1 \ K_2 \ K_3] \in \mathbb{R}^{1\times 3}$. Find A_c such that the closed-loop dynamics are $\dot{x}(t) = A_c x(t)$. Note that A_c should depend on numerical values in A and B, as well as the entries that make up K.

$$Ae = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ -1 & -1 & 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} K_1 & K_2 & K_3 \end{bmatrix} \begin{bmatrix} K_1 & 1 & K_2 & K_3 \\ -1 & -1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
(b) Find the closed-loop characteristic polynomial?
$$Aet (\lambda T_3 - A_c) = \begin{bmatrix} \lambda - K_1 & -(L + K_2) & -K_3 \\ \lambda - K_1 & -(L + K_2) & -K_3 \end{bmatrix}$$

$$Aet (\lambda T_3 - A_c) = \begin{bmatrix} \lambda - K_1 & -(L + K_2) & -K_3 \\ \lambda - K_1 & -(L + K_2) & -K_3 \end{bmatrix}$$

$$det (\lambda \vec{L}_3 - A_c) = \begin{pmatrix} \lambda - K_1 - (1+K_2) - K_3 \\ -1 & \lambda & 0 \\ 1 & 1 & \lambda \end{pmatrix}$$

$$= (\lambda - K_1) \lambda^2 + (-K_3)(1)(1) - [-(1+K_2)(1)] \lambda^3 - [-K_3)(1)(1) - [-K_3)(1)(1) - [-K_3)(1)(1) - [-K_3)(1)(1) - [-K_3)(1)(1) - [-K_3](1)(1) - [-K_3](1) -$$

 $= \langle \lambda - K_j \rangle \lambda^2 + (-k_3 \times 1)[1) - \left[-(\lfloor + K_3 \rfloor + L) \rangle \lambda \right] - (-K_3) \lambda$ $= \lambda^3 - K_1 \lambda^2 + (k_3 - K_2 - 1) \lambda + K_3$ (c) For values for the entries of K such that the closed-loop eigenvalues are at $\{-1+j, -1-j, -2\}$

derived poly =
$$(\lambda+1-j)(\lambda+1+j)(\lambda+2)$$

= $(\lambda^2+2\lambda+2)(\lambda+2)$
= $\chi^3+4\lambda^2+6\lambda+4$

match welfacests: - K1 = 4, K3-K2-1=6, K3=4

- 3. Consider the process model $\dot{x}(t) = x(t) + u(t) + d(t)$, y(t) = x(t), where u is the control input, d is the disturbance, and y is the measured output. For simplicity ignore sensor noise in this problem.
- (a) Using the controller architecture

$$\dot{z}(t) = r(t) - y(t)
 u(t) = K_1 z(t) + K_0 r(t) + K_1 y(t)$$

find the closed-loop state space matrices $\bar{A} \in \mathbb{R}^{2 \times 2}, \bar{B} \in \mathbb{R}^{2 \times 2}, \bar{C} \in \mathbb{R}^{1 \times 2}, \bar{D} \in \mathbb{R}^{1 \times 2}$

$$\left[egin{array}{c} \dot{x}(t) \ \dot{z}(t) \end{array}
ight] = ar{A} \left[egin{array}{c} x(t) \ z(t) \end{array}
ight] + ar{B} \left[egin{array}{c} r(t) \ d(t) \end{array}
ight]$$

$$egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} egi$$

substitute for u in x eq, and y=x in u = eqs,

$$\begin{vmatrix} \dot{x}(t) \\ \dot{z}(t) \end{vmatrix} = \begin{bmatrix} 1 + \kappa_1 & \kappa_2 \\ -1 & o \end{bmatrix} \begin{bmatrix} x(t) \\ z(t) \end{bmatrix} + \begin{bmatrix} \kappa_0 & i \\ 1 & o \end{bmatrix} \begin{bmatrix} r(t) \\ d(t) \end{bmatrix}$$

$$\begin{vmatrix} \dot{x}(t) \\ \dot{z}(t) \end{bmatrix} = \begin{bmatrix} 1 + \kappa_1 & \kappa_2 \\ -1 & o \end{bmatrix} \begin{bmatrix} x(t) \\ z(t) \end{bmatrix} + \begin{bmatrix} \kappa_0 & i \\ 1 & o \end{bmatrix} \begin{bmatrix} r(t) \\ d(t) \end{bmatrix}$$

(b) In terms of
$$K_{i}$$
, K_{0} , K_{1} , what is the closed-loop characteristic polynomial?

$$\lambda_{i} e_{p} = \det \left(\lambda I_{2} - \begin{bmatrix} (l+K_{i}) & K_{2} \\ -l & 0 \end{bmatrix} \right) = \det \begin{bmatrix} \lambda - l - k_{1} & -k_{2} \\ 1 & \lambda \end{bmatrix}$$

$$= \lambda^{2} - (l+K_{1})\lambda + K_{2}$$

 $= \lambda^2 - (\downarrow + k_1) \lambda + k_1$ (c) Design K_i and K_1 so that the closed-loop eigenvalues are a complex-conjugate pair, with $(\xi = 0.7. \omega_n = 2)$.

Match wefts
$$-(1+K_1) = 2.8$$
 $K_{\pm} = 4$ $K_{\pm} = 4$

elsed-loss do change

(d) Choose K_0 so that the instantaneous-gain from $r \to u$ is 0.5

$$I(0) = \kappa_1 z(0) + \kappa_1 c(0) + \kappa_1 x(0)$$

$$IG_{fall} = K_0 \qquad \text{Se}$$

set /6 = 0.5

(e) For this closed-loop system, what is the steady-state gain from $r \to y$?

(f) For this closed-loop system, what is the steady-state gain from
$$d \rightarrow y$$
?

PI Architecture for 1st order plant $\Rightarrow 556d \rightarrow y = 0$

(g) With the K_I , K_0 , K_1 already designed (and fixed at these values), suppose the loop system with this modified process. process model changes to $\dot{x}(t) = 1.1x(t) + 0.9u(t) + 0.8d(t)$. For the closed-

robust to changes i. what is the steady-state gain from $r \to y$?

ii. what is the steady-state gain from $d \rightarrow y$?

iii. what are the closed-loop eigenvalues? With mod freatures we have
$$Acsp = \begin{bmatrix} 1.1 - (9)3.8 & (9)4 \\ -1 & 0 \end{bmatrix} = \begin{bmatrix} -2.32 & 3.6 \\ -1 & 0 \end{bmatrix}$$
Charpsy = $\lambda^2 + 2.32\lambda + 3.6$

- 4. This problem focuses on the response of the system $\dot{x}(t) = Ax(t) + Bu(t), \ y(t) = Cx(t)$ For each system given below
- Compute the eigenvalues of A
- Determine $\lim_{t\to\infty} y(t)$, for the response with $x(0)=0_2, u(t)\equiv 1$ for all $t\geq 0$
- Determine $\dot{y}(0)$, for the response with $x(0) = 0_2$, $u(t) \equiv 1$ for all $t \geq 0$
- Make an approximate sketch of the response y(t) versus t, with $u(t) \equiv 1$ for all $t \geq 0$, starting from $x(0) = 0_2$. Numerically mark/label the vertical and horizontal scales.

(a)
$$A = \begin{bmatrix} -5 & 4 \\ -2 & 1 \end{bmatrix}$$
, $B = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$, $C = \begin{bmatrix} -2 & 3 \end{bmatrix}$
• Eigenvalues =

• Eigenvalues =
$$(\lambda + 5)(\lambda - 1) + 8 = \lambda^2 + 4\lambda + 3 = (\lambda + 3)(\lambda + 1)$$
• $\lim_{t \to \infty} y(t) = -CA^{-1}B$
• $\lim_{t \to \infty} y(t) = -CA$

•
$$\dot{y}(0) = C\beta$$

= $\begin{bmatrix} -2 & 3 \end{bmatrix} \begin{bmatrix} 3 \\ 2 \end{bmatrix}$ = 0
• Sketch of response (mark/label both scales)

(b)
$$A = \begin{bmatrix} -1 & 5 \\ -5 & -1 \end{bmatrix}$$
, $B = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$, $C = \begin{bmatrix} 4 & 0 \end{bmatrix}$

Visible penots = 2.5

• $\lim_{t\to\infty} y(t) = -\mathbf{c}A^{-t}\boldsymbol{\beta}$

•
$$\dot{y}(0) = CB = \left[\psi \text{ o} \right] \begin{pmatrix} -1 \\ 1 \end{pmatrix} = -4$$

Sketch of response (mark/label both scales)

5. Consider the 2-state dynamic system $\dot{x}(t) = Ax(t) + Bu(t)$, with

$$A := \begin{bmatrix} 4 & -5 \\ 3 & -4 \end{bmatrix}, \quad B := \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

(a) What are the eigenvalues of A
$$d\mathcal{U}\left(\lambda \mathbf{I} - A\right) = (\lambda - 4)(\lambda + 4) + 15 = \lambda^{2} - 1 = (\lambda - 1)(\lambda + 4)$$

$$eval_{0} = \{-1, 1\}$$

- (b) Is the system stable? No

Made =
$$(\lambda + 1)(\lambda + 5) = \lambda^2 + 9\lambda + 20$$

match coeff: $-K_1 - K_2 = 9$) no solution, as
 $-1 + K_1 + K_2 = 20$) dependence on K_1 / C_2
is the same [not livearly independent) and the solution exist.