
 Page 1/18

University of California, Berkeley
College of Engineering

Computer Science Division  EECS
Spring 2019

John Kubiatowicz

Midterm I
February 28th, 2019

CS162: Operating Systems and Systems Programming

Your Name:

SID AND 162 Login
(e.g. s042):

TA Name:

Discussion Section
Time:

General Information:
This is a closed book exam. You are allowed 1 page of notes (both sides). You may use a calculator.
You have 2 hours to complete as much of the exam as possible. Make sure to read all of the questions
first, as some of the questions are substantially more time consuming.

Write all of your answers directly on this paper. Make your answers as concise as possible. On
programming questions, we will be looking for performance as well as correctness, so think through
your answers carefully. If there is something about the questions that you believe is open to
interpretation, please ask us about it!

Problem Possible Score

1 18

2 21

3 27

4 21

5 13

Total 100

CS 162 Spring 2019 Midterm I February 28th, 2019

 Page 2/18

[This page left for ]

3.14159265358979323846264338327950288419716939937510582097494459230781640628620899

CS 162 Spring 2019 Midterm I February 28th, 2019

 Page 3/18

Problem 1: True/False [18 pts]
Please EXPLAIN your answer in TWO SENTENCES OR LESS (Answers longer than this may not
get credit!). Also, answers without an explanation GET NO CREDIT.

Problem 1a[2pts]: If we disable interrupts in Pintos, the only way for another thread to run is for the current
thread to die and exit, triggering the scheduler to choose another thread to run.

 ⬜ True ⬜ False
 Explain:

Problem 1b[2pts]: Threads within the same process can share data with one another by passing
pointers to objects on their stacks.

 ⬜ True ⬜ False
 Explain:

Problem 1c[2pts]: After a forked child process calls exit(33), the child process will assign its exit
code to the parent's wait status reference (int *status) via the code *status = exit_code (where
exit_code is 33 in this case).

 ⬜ True ⬜ False
Explain:

Problem 1d[2pts]: A system call (such as read()) is implemented in the C library as a function
which does two separate things: (1) executes a “transition to kernel mode” instruction that changes
the processor from user level to kernel level, followed by (2) a call to the correct routine in the kernel.
This process is secure because the C library involves standard code that has been audited by the
designers of the kernel.

 ⬜ True ⬜ False
 Explain:

Problem 1e[2pts]: Immediately after a process has been forked, the same variable in both the parent
and the child will have the same virtual memory address but different physical memory addresses.

⬜ True ⬜ False
 Explain:

CS 162 Spring 2019 Midterm I February 28th, 2019

 Page 4/18

Problem 1f[2pts]:.”Hyperthreading” refers to the situation in which a modern operating system
allows thousands of threads to access the same address space.

⬜ True ⬜ False
 Explain:

Problem 1g[2pts]: Semaphores that operate across multiple processors (and at user level) can be
implemented on machines in which the only atomic instruction operations on memory are loads,
stores, and test-and-set.

⬜ True ⬜ False
 Explain:

Problem 1h[2pts]: Because the “monitor” pattern of synchronization involves sleeping inside a
critical section, it requires special hardware support to avoid deadlock (i.e. permanent lack of
forward progress).

⬜ True ⬜ False
 Explain:

Problem 1i[2pts]: Thread pools are a useful tool to help prevent an overly popular web site from
crashing the hosting web servers.

⬜ True ⬜ False
 Explain:

CS 162 Spring 2019 Midterm I February 28th, 2019

 Page 5/18

Problem 2: Short Answer [21pts]
Problem 2a[3pts]: What is priority donation and why is it important?

Problem 2b[3pts]: Name three ways in which the processor can transition from user mode to kernel
mode. Can the user execute arbitrary code after transitioning?

Problem 2c[3pts]: What happens when an interrupt occurs? What does the interrupt controller do?

Problem 2d[2pts]: Processes (or threads) can be in one of three states: Running, Ready, or Waiting.
For each of the following examples, write down which state the process (or thread) is in:

a. Spin-waiting for a variable to become zero:

b. Having just completed an I/O, waiting to get scheduled again on the CPU:

c. Blocking on a condition variable waiting for some other thread to signal it:

d. Scanning through the buffer cache within the kernel in response to read():

CS 162 Spring 2019 Midterm I February 28th, 2019

 Page 6/18

Problem 2e[3pts]: Disabling of interrupts can be very dangerous if done incorrectly. Is it possible
to design an OS for modern computer hardware that never disables interrupts? Why or why not?

Problem 2f[3pts]: What needs to be saved and restored on a context switch between two threads in
the same process? What if the two threads are in different processes? Be explicit.

Problem 2g[2pts]: List two reasons why overuse of threads is bad (i.e. using too many threads for
different tasks). Be explicit in your answers.

Problem 2h[2pts]: Why is it possible for a web browser (such as Firefox) to have 2 different tabs
opened to the same website (at the same remote IP address and port) without mixing up content
directed at each tab?

CS 162 Spring 2019 Midterm I February 28th, 2019

 Page 7/18

Problem 3: Synchronization Primitives [27pts]
Assume that you are programming a multiprocessor system using threads. In class, we talked about
two different synchronization primitives: Semaphores and Monitors.

The interface for a Semaphore is similar to the following:

 struct sem_t {
 // internal fields
 };
 void sem_init(sem_t *sem, unsigned int value) {
 // Initialize semaphore with initial value
 …
 }
 void sem_P(sem_t *sem) {
 // Perform P() operation on the semaphore
 …
 }
 void sem_V(sem_t *sem) {
 // Perform V() operation on the semaphore
 }

As we mentioned in class, a Monitor consists of a Lock and one or more Condition Variables. The
interfaces for these two types of objects are as follows:

 struct lock_t { struct cond_t {
 // Internal fields // Internal fields
 }; };
 void lock_init(lock_t *lock) { void cond_init(cond_t *cv, lock_t *lock) {
 // Initialize new lock // Initialize new condition variable
 … // associated with lock.
 } …
 }
 void acquire(lock_t *lock) { void cond_wait(cond_t *cv) {
 // acquire lock // block on condition variable
 … …
 } }
 void release(lock_t *lock) { void cond_signal(cond_t *cv) {
 // release lock // wake one sleeping thread (if any)
 … …
 } }
 void cond_broadcast(cond_t *cv) {
 // wake up all threads waiting on cv
 …
 }
Monitors and Semaphores can be used for a variety of things. In fact, each can be implemented with
the other. In this problem, we will show their equivalence.

Problem 3a[2pts]: What is the difference between Mesa and Hoare scheduling for monitors?

CS 162 Spring 2019 Midterm I February 28th, 2019

 Page 8/18

Problem 3b[6pts]: Show how to implement Semaphores using Monitors (i.e. the lock_t and
cond_t operations). Make sure to define sem_t and implement all three methods, sem_init(),
sem_P(), and sem_V(). None of the methods should require more than five lines. Assume that
Monitors are Mesa scheduled.

 struct sem_t {

 };
 void sem_init(sem_t *sem, unsigned int value) {

 }
 void sem_P(sem_t *sem) {

 }
 void sem_V(sem_t *sem) {

 }

Problem 3c[4pts]: Show how to implement the Locks using Semaphores (i.e. the sem_t operations).
Make sure to define lock_t and implement all three methods, lock_init(), acquire(), and
release(). None of the methods should require more than five lines.

 struct lock_t {

 };
 void lock_init(lock_t *lock) {

 }
 void acquire(lock_t *lock) {

 }
 void release(lock_t *lock) {

 }

CS 162 Spring 2019 Midterm I February 28th, 2019

 Page 9/18

Problem 3d[2pts]: Explain the difference in behavior between sem_V() and cond_signal()
when no threads are waiting in the corresponding semaphore or condition variable:

Problem 3e[10pts]: Show how to implement the Condition Variable class using Semaphores (and
your Lock class from 2c). Assume that you are providing Mesa scheduling. You should not use lists
or queues for this solution. Be very careful to consider the semantics of cond_signal() as
discussed in (2d). Hint: the Semaphore interface does not allow querying of the size of its waiting
queue; you may need to track this yourself. None of the methods should require more than five lines.

 struct cond_t {

 };
 void cond_init(cond_t *cv, lock_t *lock) {

 }
 void cond_wait(cond_t *cv) {

 }
 void cond_signal(cond_t *cv) {

 }
 void cond_broadcast(cond_t *cv) {

 }

CS 162 Spring 2019 Midterm I February 28th, 2019

 Page 10/18

Problem 3f[3pts]: Suppose that we implement locks using test-and-set and that we want to avoid
long-term spin-waiting. Also assume that we use these locks at user level to synchronize across
multiple processors. Explain why we still need to provide support for our lock implementation in the
kernel and provide an interface for any system calls that might be needed.

CS 162 Spring 2019 Midterm I February 28th, 2019

 Page 11/18

Problem 4: Syscall Potpourri (21pts)
Problem 4a[4pts]: Assume that we have the following piece of code:

 1. int main() {
 2. printf("Starting main\n");
 3. int file_fd = open("test.txt", O_WRONLY | O_TRUNC | O_CREAT, 0666);
 4. dup2(file_fd, STDOUT_FILENO);
 5. pid_t child_pid = fork();
 6. if (child_pid != 0) {
 7. wait(NULL);
 8. printf("In parent\n");
 9. } else {
 10. printf("In child\n");
 11. }
 12. printf("Ending main: %d\n", child_pid);
 13. }

What is the output of this program? You can assume that no syscalls fail and that the child’s PID is
1234. Fill in the following table with your prediction of the output:

Standard out test.txt

Problem 4b[4pts]: Next, assume that we have altered this code as follows:

 1. int main() {
 2. printf("Starting main\n");
 3. int file_fd = open("test.txt", O_WRONLY | O_TRUNC | O_CREAT, 0666);
 4. int new_fd = dup(STDOUT_FILENO);
 5. dup2(file_fd, STDOUT_FILENO);
 6. pid_t child_pid = fork();
 7. if (child_pid != 0) {
 8. wait(NULL);
 9. printf("In parent\n");
 10. } else {
 11. dup2(new_fd, STDOUT_FILENO);
 12. printf("In child\n");
 13. }
 14. printf("Ending main: %d\n", child_pid);
 15. }

What is the output this time? Fill in the following table with your prediction of the output:

Standard out test.txt

CS 162 Spring 2019 Midterm I February 28th, 2019

 Page 12/18

Problems 4c[5pts]: Consider the following fragment of a program (which is missing lines of code).
Fill in the blanks in the code to ensure that the output of this program is always the following two
lines in the following order (under all interleavings or schedules):

 val = 0
 val = 1

No more than one function call (or system call) per blank! Your solution is not allowed to make
assignments to the “val” variable. Also, no use of printf() or other print statements!

 void rectangle () {
 pid_t oval = ________________________________;
 kill(oval, SIGCONT);
 }

 void circle(int i) {

 val = 1;
 }

 int val = 0;
 int main() {
 pid_t pid = fork();

 _____________________________________;

 if (pid == 0) {

 __________________________________;

 } else {

 __________________________________;
 }

 printf(“val=%d\n”,val);
 }

CS 162 Spring 2019 Midterm I February 28th, 2019

 Page 13/18

Problem 4d[3pts]: If a child process sends a SIGKILL signal to its parent, what happens to the
parent process and the child process? Can the parent prevent this from happening?

Problem 4e[2pts]: Consider the following scenario. A process forks a child process and the parent
process waits on it. Then, the child exits normally and the parent is unblocked. Finally, the parent
makes another wait call on the child process. What happens to this last wait call and to the parent
process?

Problem 4f[3pts]: Why do we switch from the user’s stack to a kernel stack when we enter the kernel
(e.g. for a system call)? Why do we associate a unique kernel stack for each user thread?

CS 162 Spring 2019 Midterm I February 28th, 2019

 Page 14/18

[This page intentionally left blank!]

CS 162 Spring 2019 Midterm I February 28th, 2019

 Page 15/18

Problem 5: Alternate Readers-Writers Access to Database [13pts]
Reader() {
 //First check self into system
 lock.acquire();
 while (AW > 0) {
 WR++;
 okToRead.wait(&lock);

 WR--;
 }
 AR++;
 lock.release();

 // Perform actual read-only access
 AccessDatabase(ReadOnly);

 // Now, check out of system
 lock.acquire();
 AR--;
 if (AR == 0 && WW > 0)
 okToWrite.signal();
 lock.release();
}

Writer() {
 // First check self into system
 lock.acquire();
 while ((AW + AR) > 0) {
 WW++;
 okToWrite.wait(&lock);
 WW--;
 }
 AW++;
 lock.release();

 // Perform actual read/write access
 AccessDatabase(ReadWrite);

 // Now, check out of system
 lock.acquire();
 AW--;
 if (WR > 0){
 okToRead.broadcast();
 } else if (WW > 0) {
 okToWrite.signal();
 }
 lock.release();
}

Problem 5a[5pts]: Above, we show a modified version of the Readers-Writers example given in
class. It uses two condition variables, one for waiting readers and one for waiting writers. Suppose
that all of the following requests arrive in very short order (while W1 is still executing):

 Incoming stream: W1 R1 R2 R3 W2 W3 R4 R5 R6 W4 R7 W5 W6 R8 R9 W7 R10

In what order would the above code process the above requests? If you have a group of requests
that are equivalent (unordered), indicate this clearly by surrounding them with braces ‘{}’. You can
assume that the wait queues for condition variables are FIFO in nature (i.e. signal() wakes up the
oldest thread on the queue). Explain how you got your answer.

Problem 5b[2pts]: How is the above version of the Readers-Writers access control different from
the one give in class? Your answer here should be very short.

CS 162 Spring 2019 Midterm I February 28th, 2019

 Page 16/18

Problem 5c[2pts]: Explain why the above code ensures that if AR > 0, then AW == 0.

Problem 5d[2pts]: Explain why the above code makes sure that there can only be one writer at a
time and that if AW == 1, then AR==0?

Problem 5e[2pts]: Finally, explain why the code for Reader() does not have to check to see if
WR > 0 (and as a result never needs to call okToRead.broadcast())?

CS 162 Spring 2019 Midterm I February 28th, 2019

 Page 17/18

[Scratch Page: Do not put answers here!]

CS 162 Spring 2019 Midterm I February 28th, 2019

 Page 18/18

[Scratch Page: Do not put answers here!]

