
Problem 1

(a) We consider a pillbox Gaussian surface that has faces in the region to the left and to
the right of the charge configuration. By symmetry, any electric field that exists must
be normal to the faces. Thus Gauss’ law gives

2EA =
σA+ ρEAd− ρEAd

ε0
(1)

E =
σ

2ε0
(2)

Thus to the left of the object, we have

~E = −x̂ σ

2ε0
(3)

(b) By the same logic as the previous part, we have

~E = x̂
σ

2ε0
(4)

(c) Now we consider a pillbox surface that extends a distance |x| < d into the slab on the
left on one end and extends to the right of the rightmost slab on the other end. Then
Gauss’ law gives

EA+
σA

2ε0
=
σA+ ρEAd− ρEA|x|

ε0
(5)

~E = −x̂σ/2 + ρEd− ρE|x|
ε0

(6)

(d) We proceed in a similar fashion and find

EA+
σA

2ε0
=
σA+ ρEAx− ρEAd

ε0
(7)

~E = x̂
σ/2 + ρEx− ρEd

ε0
(8)

(9)

Problem 2

(a) We first consider a ring of charge Q. Along the axis through the center of the ring that
is perpendicular to the plane of the ring. For a ring of radius R and a point on the axis
a distance x away from the center of the ring, we have

V =
1

4πε0

∫
dq

r
=

1

4πε0

Q√
R2 + x2

(10)



To get the potential on the symmetry axis of the annulus, we break the annulus into
infinitesimal rings of charge dq and radius r. Thus we have

V =
1

4πε0

∫
dq√
x2 + r2

=
2πk

4πε0

∫ b

a

1√
x2 + r2

dr =
k

2ε0
ln

(
b+
√
b2 + x2

a+
√
a2 + x2

)
(11)

where we have used dq = σdA = σ2πrdr = k
r
· 2πrdr.

(b) There is only an electric field in the x direction, which we find with

~E = −∇V =
k

2ε0
x̂

(
x√

x2 + b2(b+
√
b2 + x2)

− x√
x2 + a2(a+

√
a2 + x2)

)
(12)

(c) We have ~F = m~a = q ~E. Thus

~a =
q

m
~E =

q

m

k

2ε0
x̂

(
x√

x2 + b2(b+
√
b2 + x2)

− x√
x2 + a2(a+

√
a2 + x2)

)
(13)

Problem 3
The capacitor can be thought of as a collection of capacitors that have infinitesimal areas
and are in parallel. The distance x between the plates of these infinitesimal capacitors is a
function of y, the distance from the bottom of the capacitor. In particular, we have

x = d+ y tan(θ) (14)

Then the capacitance of one of the tiny capacitors located at a height y is

dC = ε0
dA

d+ y tan(θ)
= ε0

√
Ady

d+ y tan(θ)
(15)

where we have used dA =
√
Ady. Since all the capacitors are in parallel, we can simply sum

up their capacitances via an integral

C =

∫ √A
0

ε0

√
Ady

d+ y tan(θ)
=

ε0
√
A

tan(θ)
ln(d+ tan(θ))

∣∣∣∣
√
A

0

(16)

=
ε0
√
A

tan(θ)
ln

(
1 +

tan(θ)
√
A

d

)
(17)



Problem 4

(a) Breaking the wire into segiments of length dx, we find the total resistance as

R =

∫ L

0

ρdx

A
=
ρ0L

A

(
1− e−1

)
(18)

(b) According to Ohm’s law

j =
E

ρ
(19)

Since the current and area are constant in every cross section of our wire and the
resistivity is a decreasing function of x, E must also be a decreasing function of x.

Problem 5

(a) If we look at the free body diagram of the charge on the left, we have∑
Fx = 0 = T1 sin(α)− Fe → Fe = T1 sin(α) (20)∑
Fy = 0 = T1 cos(α)−mg → mg = T1 cos(α) (21)

For the charge on the right,∑
Fx = 0 = −T2 sin(β) + Fe → Fe = T2 sin(β) (22)∑
Fy = 0 = T2 cos(β)−mg → mg = T2 cos(β) (23)

If we take the ratios of the equations from each mass, we find

tan(α) = tan β =
Fe

mg
(24)

Thus α = β

(b) When a dipole is immersed in a constant electric field, it will feel a torque given by

~τ = ~p× ~E (25)

Since the electric field is parallel to ~P1 and antiparallel to ~P2, we have

~P1 × ~E0 = 0 (26)

~P2 × ~E0 = 0 (27)

(28)

Thus when we turn on the electric field, nothing happens. The maximum torque that
the field can exert corresponds to when the dipoles and field are perpendiular to each
other. Thus the maximum torque on each dipole is

τ1M = P1E0 (29)

τ2M = P2E0 (30)


