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1. Discrete Math: True/False (12 parts: 3 points each.)

1. ∀x,∀y,¬P(x,y)≡ ¬∃y,∃x,P(x,y)
Answer: True. If for every x and y P(x,y) is not true, then there doesn’t exist an x and y where P(x,y)
is true.

2. (P =⇒ Q)≡ (Q =⇒ P).
Answer: False. The converse of a statement is not logically equivalent to the statement.

3. Any simple graph with n vertices can be colored with n−1 colors.
Answer: False. The complete graph requires n colors to properly color it.

4. The set of all finite, undirected graphs is countable.
Answer: True. Can enumerate by considering all graphs with just one vertex, then two vertices, three,
etc., all of which have a finite number of configurations of edges.

5. The function f (x) = ax (mod N) is a bijection from and to {0, . . . ,N−1} if and only if gcd(a,N) = 1.
Answer: True. a has a multiplicative inverse mod N.

6. For a prime p, the function f (x)= xd (mod p) is a bijection from and to {0, . . . , p−1}when gcd(d, p−
1) = 1.
Answer: True. The inverse function is g(x) = xe (mod p) with e = d−1 (mod p−1).

7. A male optimal pairing cannot be female optimal.
Answer: False. There could just be a single stable pairing.

8. For any undirected graph, the number of odd-degree vertices is odd.
Answer: False. The sum of the degrees is even, since it is twice the number of edges, and thus the
number of odd degree vertices is even.

9. For every real number x, there is a program that given k, will print out the kth digit of x.
Answer: False. The number of programs is countable but the number of real numbers is not.

10. There is a program that, given another program P, will determine if P halts when given no input.
Answer: False. One can reduce from the halting problem as follows. Given a program P and x,
produce a program that has a constant string with value x and runs P on x. This program does not take
any input, so determining if it halts also determines whether P halts on x.

11. Any connected simple graph with n vertices and exactly n edges is planar.
Answer: True. It is a tree plus an edge. Since a tree has one face, that edge can be drawn in that face.

12. Given two numbers, x and y, that are relatively prime to N, the product xy is relatively prime to N.
Answer: True. Neither have a prime factor in common with N and neither does their product which
only has prime factors from x and y.

2. Discrete Math:Short Answer (10 parts: 4 points each)

1. If gcd(x,y) = d, what is the least common multiple of x and y (smallest natural number n where both
x|n and y|n)? [Leave your answer in terms of x,y,d]
Answer: xy

d . We have x = kd and y = `d where gcd(k, `) = 1. xy
d = k`d, and thus is divisible by x

and y. Moreover, n must contain all the prime factors of k and ` and d and since they have none in
common, n must be as large as this product.
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2. Consider the graph with vertices {0, . . . ,N−1} and edges (i, i+a) (mod N) for some a 6≡ 0 (mod N).
Let d = gcd(a,N). What is the length of the longest cycle in this graph in terms of some subset of N,a,
and d?
Answer: N/d. If one takes j = N/d steps along edges from i one gets to i+ ja = i (mod N) since
ja = N/d(kd) = Nk = 0 (mod N).

3. What is the minimum number of women who get their favorite partner (first in their preference list) in
a female optimal stable pairing? (Note that the minimum is over any instance.)
Answer: 0. Consider a 3-men, 3-women example where women A and B have man 1 as their favorite,
and man 1 rejects B, who then proposes to woman C’s current partner. She then asks man 1, who likes
her best and rejects woman A. Now, no woman has her favorite partner.

4. What is the number of ways to split 7 dollars among Alice, Bob and Eve? (Each person should get an
whole number of dollars.)
Answer:

(9
2

)
. We think of assigning a number to Alice, one to Bob and one to Eve, where the numbers

sum to 5. We map this situation to one of having 5 stars and 2 bars and then choosing where the bars
go out of the seven positions.

5. What is 624 (mod 35)?
Answer: 1. This is from the fact that a(p−1)(q−1) ≡ 1 (mod pq) when gcd(a, pq) = 1. Here a = 6 and
pq = (7)(5) = 35 and (p−1)(q−1) = 24.
Alternative Answer: Notice that 62 = 1 (mod 35), which tells us 624 = 1 (mod 35).

6. If one has three distinct degree at most d polynomials, P(x),Q(x),R(x), what is the maximum number
of intersections across all pairs of polynomials?
Recall that we define intersections to be two polynomials having the same value at a point. (That is if
P(1) = Q(1), and P(2) = R(2) and R(3) = Q(3), that is three intersections. If they all meet at a point
P(1) = Q(1) = R(1), that is three intersections.)
Answer: 3d. Consider if there were 3d +1. Any intersection point can be assigned to a pair of poly-
nomials that intersect at that point. The number of points assigned to at least one pair of polynomials
must be d +1 which means that pair of polynomials is the same.
Have all three polynomials intersect on the same d points and differ on a d + 1 fixed point yields 3d
intersections.

7. Working modulo a prime p > d, given a degree exactly d polynomial P(x), how many polynomials
Q(x) of degree at most d are there such that P(x) and Q(x) intersect at exactly d points?
Answer:

(p
d

)
(p−1).

For any polynomial Q(x) that intersects at d points, we have R(x) = P(x)−Q(x) = 0 at these d points.
This polynomial can be factored into the form R(x) = a0(x− r1) · · ·(x− rd). We need to choose a0 and
r1, . . . ,rd to specify Q(x). The number of ways to choose a0 is p−1 and the number of ways to choose
r1, . . . ,rd without repetition as the intersection points are distinct.

8. Recall that the vertices in a d-dimensional hypercube correspond to 0−1 strings of length d. We call
the number of 1’s in this representation the weight of a vertex.

(a) How many vertices in a d-dimensional hypercube have weight k?
Answer:

(d
k

)
. Need to choose where the 1’s are.

(b) How many edges are between vertices with weight at most k and vertices with weight greater than
k?
Answer:

(d
k

)
(d− k). Each vertex of weight k has d− k neighbors of weight k+1.
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9. For a prime p, how many elements of {0, . . . , pk−1} are relatively prime to p?
Answer: pk−1(p−1). One can eliminate all the numbers that are divisible by p, which gives pk− pk−1

and factor out p.
Or one can also recall Euler’s totient formula which we used on the homework.

3. Some proofs. (3 parts. 5/5/8 points.)

1. Recall for x,y, with gcd(x,y) = d, that there are a,b ∈ Z where ax+by = d. Prove that gcd(a,b) = 1.
Answer: Notice x = dt and y = ds for integers s and t, plugging in we get asd +btd = d.
Dividing, we get as+bt = 1. Now, this suggests gcd(a,b) = 1 by Extended Euclid.

2. You have n coins. The probability of the ith coin being heads is 1/(i+1) (i.e., the biases of the coins
are 1

2 ,
1
3 , . . . ,

1
n+1 ). You flip all the coins. What is the probability that you see an even number of heads?

Prove it. (Hint: the answer is quite simple.)
Answer: 1

2 . For one coin we are asking for the probability that there are zero heads, or 1/2. Let Ai be
the event that the number of heads is even in the first i coins, and Hi be the event that the ith coin is
heads. We have
P(Ai+1) = P(Ai)P(Hi)+P(Ai)P(Hi) = (1/2)(1/i)+(1/2)(1−1/i) = 1/2.
Alternative Solution: Note that, because of the 1st coin with bias 1/2, every odd-headed arrangement
has another even-headed arrangement of equal probability, corresponding to flipping the first coin.

3. Consider a game with two players alternating turns. The game begins with N > 0 flags. On each turn,
each player can remove 1,2,3, or 4 flags. A player wins if they remove the last flag (even if they
removed several in that turn).
Show that if both players play optimally, player 2 wins if N is a multiple of 5, and player 1 wins
otherwise. (Note player 1 goes first.)
Answer: The base case is that Player 1 wins if N ∈ {1,2,3,4}. We assume the statement by induction,
and note that if N is not a multiple of 5, that Player 1 can make it a multiple of 5 by removing one
of {1,2,3,4} flags. Then player 2 must remove some number of flags in {1,2,3,4} and the resulting
number of flags that player 1 faces is not a multiple of 5 and it is smaller. Thus, by induction player 1
has a winning strategy.

4. Probability:True/False. (7 parts, 3 points each.)

1. For a random variable X , the event “X = 3” is independent of the event “X = 4”.
Answer: False. They are mutually exclusive not independent.

2. Let X ,Y be Normal with mean µ and variance σ2, independent of each other. Let Z = 2X +3Y . Then,
LLSE[Z | X ] = MMSE[Z | X ].
Answer: True.
Notice, LLSE[Z|X ] = 5µ + cov(X ,2X+3Y )

var(X) (X−µ) = 2X +3µ as X and Y are independent.

MMSE[Z|X ] = E[2X +3Y | X ] = 2X +E[3Y | X ] = 2X +3µ as X and Y are independent.

3. Any irreducible Markov chain where one state has a self loop is aperiodic.
Answer: True. Since one can reach this state from any state and vice versa, there is a cycle of every
length, which means that the period which is the gcd of all cycle lengths is at most 1.

4. Given a Markov Chain, let the random variables X1,X2,X3, . . ., where Xt = the state visited at time t in
the Markov Chain. Then E[Xt |Xt−1 = x] = E[Xt |Xt−1 = x∩Xt−2 = x′].
Answer: True. The value of Xt conditioned on Xt−1 is independent of all previous times.
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5. Given an expected value µ , a variance σ2 ≥ 0, and a probability p ∈ (0,1), it is always possible
to choose a and b such that a discrete random variable X which is a with probability p and b with
probability 1− p will have the specified expected value and variance.
Answer: True. Can think of it as a system of two equations for variance and expected value, with two
unknowns a and b.

6. Consider two random variables, X and Y , with joint density function f (x,y) = 4xy when x,y ∈ [0,1]
and 0 elsewhere. X and Y are independent.
Answer: True. f (x) =

∫ 1
0 f (x,y)dy = 2x. f (x|Y = y) = f (x,y)/

∫ 1
0 f (x,y)dx = 4xy/(4y(1/2)) = 2x

7. Suppose every state in a Markov chain has exactly one outgoing transition. There is one state, s, whose
outgoing transition is a self-loop. All other states’ outgoing transitions are not self-loops. If a unique
stationary distribution exists, it must have probability 1 on s and 0 everywhere else.
Answer: True. You can always leave every other state, but s is the hotel california; you may check
out, but you can never leave.

5. Probability: Short Answer. (17 parts, 4 points each.)

1. Consider X ∼ G(p), a geometric random variable X with parameter p. What is Pr[X > i|X > j] for
i≥ j?
Answer: (1− p)i− j. This is the event that the first i− j trials fail after the jth trial.

2. Suppose we have a random variable, X , with pdf

f (x) =

{
cx2, if 0≤ x≤ 1
0, otherwise

What is c?
Answer: 3.

∫ 1
0 cx2 = cx3/3|10 = c/3 = 1, which implies that c = 3.

3. Given a binomial random variable X with parameters n and p, (X ∼ B(n, p)) what is Pr[X = E[X ]]?
(You should assume pn is an integer.)
Answer:

( n
pn

)
ppn(1− p)(1−p)n

4. Pr[A|B] = 1/2, and Pr[B] = 1/2, and A and B are independent events. What is Pr[A]?
Answer: 1/2. Pr[A|B] = Pr[A] for independent events. For A and B to be independent, Pr[A]×Pr[B] =
Pr[A|B]Pr[B].

5. Aaron is teaching section and has 6 problems on the worksheet. The time it takes for him to finish
covering each question are i.i.d. random variables that follow the exponential distribution with param-
eter λ = 1/20. Additionally, for each question, Aaron may choose to skip it entirely with probability
p = 1/3. What is the expected time of section?
Answer: 80 minutes. Let Xi be the random variable corresponding to the time for the ith problem
where it is 0, if Aaron doesn’t do it. E[Xi] = E[Xi|skip]Pr[skip]+E[Xi|notskip]Pr[notskip] = 0∗1/3+
20∗2/3 = 40/3. The total time is 6E[X1] = 80.

6. Let X be a uniformly distributed variable on the interval [3,6]. What is Var(X)?
Answer: 9/12. The variance of X being uniform over [0,1] is 1/12. The width of this interval is 3 so
we get 9/12.

7. Label N teams as team 1 through team N. They play a tournament and get ranked from rank 1 to rank
N (with no ties). All rankings are equally likely.
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(a) What is the total number of rankings where team 1 is ranked higher than team 2?
Answer: N!

2 . The number of orders with 1 before 2 is the same a the number where 1 is after 2; a
bijection is to switch the 1 and 2.

(b) What is the expected number of teams with a strictly lower rank number than their team number?
For example, if team 3 was rank 1, their rank number (1) is lower than their team number (3).
Simplify your answer (i.e. no summations).
Answer: N−1

2 . For team numbered i, let Xi be the indicator variable that i ends up at a lower rank.
E[Xi] = Pr[Xi = 1] = (i−1)/N since each position is equally likely and there are i−1 positions
before i. Summing up over i, we obtain 1

N (N−1)(N)/2 = (N−1)/2.

8. Let X be a random variable that is never smaller than −1 and has expectation 5. Give a non-trivial
upper bound on the probability that X is at least 12.
Answer: 6/13. Let Y = X + 1, which is a non-negative random variable with expectation 6. By
Markov’s inequality, Pr[X ≥ 12] = Pr[Y ≥ 13]≤ 6

13 .

9. Let X be a random variable with mean E[X ] = 5 with E[X2] = 29. Give a non-trivial upper bound on
the probability that X is larger than 12.

Answer: 4/49. Chebyshev’s inequality suggests that Pr[|X −E[X |] > t] ≤ Var(X)
t2 = 4

49 . Moreover,
Var(X) = E[X2]−E[X ]2 = 4.

10. Let T be the event that an individual gets a positive result on a medical test for a disease and D be the
event that an individual has the disease. The test has the property that Pr[T |D] = .9 and Pr[T |D] = .01.
Morever, Pr[D] = .01. Given a positive result, what the probability that the individual has a disease?
(No need to simplify your answer, though it should be a complete expression with numbers.)

Answer: Pr[D|T ] = Pr[T |D]×Pr[D]
Pr[T |D]×Pr[D]+Pr[T |Dc]Pr[Dc] =

.009
.009+.0099 .

11. Let R be a continuous random variable corresponding to a reading on a medical test for an individual
and D be the event that the individual has a disease. The probability of an individual having the
disease is p. Further, let fR|D(r) (and fR|D(r)) be the conditional probability density for R conditioned
on D (respectively conditioned on D). Given a reading of r, give an expression for the probability the
individual has the disease in terms of fR|D(r), fR|D(r), and p.

Answer: fR|D(r)×p
fR|D(r)×p+ fR|D(r)×(1−p) .

This can be seen as the limit of Pr[(r≤R≤r+dr)∩D]
Pr[r≤R≤r+dr] .

The answer computes this with factors of dr in the numerator and denominator which then divide out.

12. For continuous random variables, X and Y where Y = g(X) for some differentiable, bijective function
g : R→ R. What is fY (y) in terms of fX(·), g(·), g−1(·) and g′(·)? (Possibly useful to remember that
fY (y)dy = Pr[y≤ Y ≤ y+dy].)
Answer: fX(g−1(y))/g′(g−1(y)).
Recall that fY (y)dy = Pr[y≤ Y ≤ y+dy]. We have fX(x)dx = Pr[x≤ X ≤ x+dx].
Now, we have y = g(x), so dy = g′(x)dx which also states that dx = dy/g′(y).
For a fixed y and dy, x = g−1(y), and x+dx = g−1(y)+dy/g′(x).
Thus, we have fY (y)dy = Pr[g−1(y)≤ X ≤ g−1(y)+dy/g′(x)] = fX(x)dy/g′(x).
Dividing by dy yields the expression.

13. What is the stationary distribution, π , for the following three state Markov chain? (Hint: π(0) = 3/4)
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0 1 2

1/4
3/4

1/4

3/4

3/4
1/4

π(1) π(2)
Answer: π(0) = 3/4,π(1) = (3/4) ∗ (1/4) = 3/16,π(2) = 1/16. π(0) is by noting that no matter
where you are, the next state is 0 with probability 3/4, π(1) = (1/4)π(0), and finally π(2) is whatever
it needs to be to add up to 1.

14. Consider continuous random variables, X and Y , with joint density that is f (x,y) = 2 for x,y ∈ [0,1]
and where y < x. That is, the distribution is uniform over the shaded region in the figure below.

x

y
1

1

Say someone takes a sample of X or Y with equal probability, and then announces that the value is
2/3. What is the probability that the sample is from X?
Answer: 2/3.

We wish to compute Pr[ from X | see 2/3] which is just Pr[ from X and 2/3]
Pr[2/3] .

Now Pr[ from X and 2/3] ∝ (1/2)× fX(2/3) = (2/3)(2) = 4/3
The Pr[from Y and 2/3] ∝ (1/2)× fY (2/3) = ((1/3)(2)) = 2/3

Thus, the ratio is 4/3
2/3+4/3 or 2/3.

15. Given a random variable X ∼ Expo(λ ), consider the integer valued random variable K = dXe.
(a) What is Pr[K = k]?

Answer: (1− e−λ )(e−λ )k−1

A proof is as follows:

Pr[K = k] =
∫ k

k−1
λe−λ tdt

= (−e−λ (k)+ e−λ (k−1))

= e−λ (k−1)(1− e−λ )

(b) What standard distribution with associated parameter(s) does this correspond to?
Answer: It is geometric with parameter p = 1− e−λ .
This can be seen as the process where the probability of success in an integer interval is the
probability that the exponential variable is in an interval of length 1, which is 1− e−λ .

6. Longer Probability Questions.
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1. [I iterated my expectations, and you can, too!] (4 parts. 5 points each.)
Consider two discrete random variables X and Y . For notational purposes, X has probability mass
function (or distribution), pX(x) = Pr[X = x], mean µX , and variance σ2

X . Similiarly, random variable
Y has PMF pY (y) = Pr[Y = y], mean µY and variance σ2

Y .
For each of True/False parts in this problem, either prove the corresponding statement is True in general
or use exactly one of the counterexamples provided below to show the statement is False.

‐1 ‐1

+1

+10

(a) Potential Counterexample I (b) Potential Counterexample II

(a) Suppose E[Y |X ] = c, where c is a fixed constant. This means that the conditional mean E[Y |X ]
does not depend on X .

i. Show that c = µY , the mean of Y .

Answer: Apply the Law of Iterated Expectations:

E[Y ] = E[E[Y |X ]] = E[c] = c.

So, c = µY . To show this in more detail,

E[Y ] = E[E[Y |X ]] = ∑
x

E[Y |X = x]︸ ︷︷ ︸
=c

pX(x) = c∑
x

pX(x)︸ ︷︷ ︸
=1

= c.

ii. True or False?
The random variables X and Y are independent.

Answer: False. In Potential Counterexample I, E[Y |X = 1] =E[Y |X =−1] =E[Y |X = 0] = 0.
However, X and Y are not independent, as the pY |X(1|0) = 1/3 6= 1/5 = pY (1). Alternatively,
note that pY,X(1,1) = 0, whereas neither pY (1) nor pX(1) is zero. So, X and Y are dependent,
even though the conditional mean E[Y |X ] does not depend on X .

iii. True or False?
The random variables X and Y are uncorrelated, meaning that cov(X ,Y ) = 0.

Answer: True. The covariance is 0, if E[XY ] = E[X ]E[Y ]. In this case,
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E[XY ] = ∑
x

x∑
y

yPr[X = x,Y = y]

= ∑
x

Pr[X = x]x∑
y

yPr[Y = y|X = x]

= ∑
x

Pr[X = x]xE[Y |X = x]

= c∑
x

Pr[X = x]·= cE[X ] = E[Y ]E[X ].

An easier proof is that if the MMSE is a constant (and thus a linear function), the LLSE must
be the same as the MMSE, and so is also a constant. From our formula for the LLSE, that
implies that cov(X ,Y ) = 0.
Another Alternative: E[E[XY | X ]] = E[XE[Y | X ]] = E[cX ] = cE[X ] = E[Y ]E[X ].

(b) Suppose X and Y are uncorrelated, meaning that cov(X ,Y ) = 0.
True or False?

The conditional mean is E[Y |X ] = c, where c is a fixed constant, meaning
that E[Y |X ] does not depend on X .

Answer: False.
We use Counterexample II to show this. Notice that µX = E(X) = 0. Therefore,

cov(X ,Y ) = E(XY )− µX︸︷︷︸
=0

µY

= E(XY ) = E(X3)

=
+1

∑
x=−1

x3 pX(x) =
1
3

+1

∑
x=−1

x3

= 0.

So far we’ve shown that X and Y are uncorrelated. However, note that

E(Y |X) = E(X2|X) = X2.

In particular,

E(Y |X) =


+1 if X =−1
0 if X = 0
+1 if X =+1.

Clearly, E(Y |X) varies with X ; it is not a constant.

2. [Estimations of a random variable with noise.] (6 parts. 2/4/2/2/4/8 points.)
Let random variable Y denote the blood pressure of a patient, and suppose we model it as a Gaussian
random variable having mean µY and variance σ2

Y .
Our blood pressure monitor (measuring device) is faulty. It yields a measurement

X = Y +W

where the noise W is a zero mean Gaussian random variable (µW = 0) with variance σ2
W . Assume that

the noise W is uncorrelated with Y . Note, that the actual blood pressure Y is inaccessible to us, due to
the additive noise W .
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(a) Show that σ2
X = σ2

Y +σ2
W .

Answer: The variance of the sum of the two uncorrelated random variables is the sum of the
variances.

(b) Show that L(Y |X), the Linear Least-Square Error Estimate for the blood pressure Y , based on the
measured quantity X , is given by

L(Y |X) = a+bX , where a =
σ2

W

σ2
Y +σ2

W
µY and b =

σ2
Y

σ2
Y +σ2

W
.

Answer: The formula is L(Y |X) = cov(X ,Y )
var(X) (X −E(X))+E(Y ) or b = covX ,Y

var(X) and a = µY −bµX .

We have all the terms but cov(X ,Y ).

cov(X ,Y ) = E[(X−µX)(Y −µY )]

= E[(Y +W −µY −µW )(Y −µY )]

= E[(Y −µY )(Y −µY )+(W −µW )(Y −µY )]

= E[(Y −µY )(Y −µY )]+E[(W −µW )(Y −µY )]

= σ
2
Y +0

(Alternatively, cov(X ,Y ) = E[XY ]−E[X ]E[Y ] = E[Y 2 +YW ]− (E[Y ]2 +E[Y ]E[W ]) = E[Y 2]−
E[Y ]2 +E[YW ]−E[Y ]E[W ] = σ2

Y +Cov(Y,W ) = σ2
Y .)

Thus we have b =
σ2

Y
σ2

W+σ2
Y

and a = µy−bµx. Since µY = µX , we can rewrite a as follows:

a = µY −bµX = µY −bµY

= (1−b)µY

=

(
1− σ2

Y

σ2
W +σ2

Y

)
µY

=
σ2

W

σ2
W +σ2

Y
µY

(c) We now consider two extreme cases.
i. Suppose the blood pressure monitor has been repaired —that is, it introduces no noise. De-

termine a simple expression for L(Y |X) in this case.

Answer: L(Y |X) = X . In this case, Y = X .
ii. Suppose the blood pressure monitor’s performance has deteriorated, so it now introduces

noise whose variance σ2
W � σ2

Y . In the limit σ2
W → ∞, what does your best linear estimator

converge to? Explain briefly, in plain English words, why your answer makes sense.

Answer: L(Y |X)→ µY . In the limit the measurement, X =Y +W , is just noise, so one should
just predict the mean of Y as X gives no information.

(d) Recall L[Y |X ] is a function of X and is a random variable. Let Ŷ = L[Y |X ] = a+bX .
Determine the distribution of Ŷ and the appropriate parameters.
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Answer: Since, Ŷ = a+bX is an affine function of X , Ŷ has the same type of PDF as X—that is,
Ŷ is a Gaussian random variable. All we must do is determine its mean and variance. Since the
noise is zero-mean, we know that µX = µY . Therefore, E(Ŷ ) = a+bµX = a+bµY . Furthermore
var(Ŷ ) = b2σ2

X . Therefore,

Ŷ ∼N (a+b µY ,b2
σ

2
X)

fŶ (ŷ) =
1

bσX
√

2π
e−(ŷ−a−bµY )

2/2b2σ2
X .

(e) We estimate µ̂Y of the true mean µY as

µ̂Y =
X1 + · · ·+Xn

n
,

where Xi are independent measurements of the random variable X = Y +W .
We want to be at least 95% confident that the absolute error |µ̂Y − µY | is within 4% of µY . Your
task is to determine the minimum number of measurements n needed so that

Pr
[
|µ̂Y −µY | ≤ 0.04 µY

]
≥ 0.95.

You may assume that σ2
Y = 12 and σ2

W = 4 and that the true mean µY ∈ [60,90].
(Remember that in this course, you may assume that a Gaussian random variable lies within 2σ

of its mean with 95% probability.)
Answer: We know that

var(µ̂Y ) =
nvar(Xi)

n2 =
σ2

Y

n
=

σ2
Y +σ2

W

n
=

16
n
, so StdDev(µ̂Y ) =

σY√
n
=

4√
n
.

Pr
(
|µ̂Y −µY | ≤ 0.04 µY

)
≥ 0.95.

Pr
(∣∣∣∣ µ̂Y −µY

StdDev(µ̂Y )

∣∣∣∣≤ 0.04 µY

4/
√

n

)
≥ 0.95

Pr
(∣∣∣∣ µ̂Y −µY

4/
√

n

∣∣∣∣≤ 0.04 µY

4/
√

n

)
≥ 0.95

Pr
(
|Zn| ≤

0.04 µY
√

n
4

)
≥ 0.95,

where Zn =
µ̂Y−µY
4/
√

n is a standardized Gaussian random variable. It must be that

0.04 µY
√

n
4

≥ 2 (A more accurate right side is 1.96.).

Taking the minimum value µY = 60, so we obtain a conservative lower bound on n,

60
√

n
100

≥ 2

√
n≥ 200

60
=

10
3

n≥ 100
9

= 11.11, which leads to n≥ 12.

11
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3. [Derive the Unexpected from a Uniform PDF] (2 parts. 3/2 points.)

You wish to use X ∼U [0,1) to produce a different nonnegative random variable Y = − 1
λ

ln(1−X),

for 0≤ X < 1, where λ is a positive constant, and ln is the natural logarithm function.
(Note that the pdf for X ∼U [0,1) is the same as for X ∼U [0,1].)

(a) Determine the CDF FY (y) = Pr[Y ≤ y]. [It may be useful to recall that Fx(x) = x for x ∈ [0,1).]
Answer: The CDF for Y is

FY (y) = Pr(Y ≤ y) =

{
0 y < 0
Pr
(
− 1

λ
ln(1−X)≤ y

)
y≥ 0.

For y≥ 0, we have

FY (y) = Pr
(
− 1

λ
ln(1−X)≤ y

)
= Pr (− ln(1−X)≤ λy)

= Pr (−λy≤ ln(1−X)) = Pr
(

e−λy ≤ 1−X
)

= Pr
(

X ≤ 1− e−λy
)

= FX(1− e−λy)

= 1− e−λy,

where the last equality is due to the fact that FX(x) = x for 0≤ x < 1.
(b) Determine the PDF fY (y) and indicate what standard distribution it corresponds to.

Answer: Therefore,

fY (y) =
dFY (y)

dy
=

{
0 y < 0
λ e−λy y≥ 0.

Clearly, Y ∼ Expo(λ )—that is, Y has an exponential PDF with parameter λ .

4. [Finding a Three-Bit String in a Binary Bitsream] (3 parts. 2/5/5 points.)
Consider a bitstream B1,B2, . . . consisting of IID Bernoulli random variables obeying the probabilities
Pr[Bn = 1] = p, and Pr[Bn = 0] = 1− p, for every n = 1,2, . . ..
Here, 0 < p < 1.
We begin parsing the bitstream from the beginning, in search of a desired binary string represented by
the codeword c=(1,1,0). We say that we’ve encountered the codeword c at time n if (Bn−2,Bn−1,Bn)=
(1,1,0). We model this process using the Markov chain shown below.

12
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0No Bit Found 1 "1" Found

2 "11" Found3"110" Found

p

p

1− p

1− p

p

1− p

p
1− p

Answer:
There are four states, labeled 0,1,2, and 3. The state number i represents the number of the leading
(leftmost) bits of the codeword c = 110 for which we’ve found a match at time n—starting from the
leading (leftmost) bit. For example, being in state 2, means you saw a 11 in the two latest bits.
That is, if Xn denote the state of the process at time n and and the bit-stream consists of B1, . . . ,Bn. We
have Xn = 2 when (Bn−1,Bn) = 11. We begin with X0 in state 0 by default which corresponds to no
prefix of the codeword c = 110 has been read.

(a) Provide a clear, succinct explanation as to why the Markov chain above has a set of unique
limiting-state (i.e., stationary) probabilities:

πi = lim
n→∞

Pr[Xn = i], i = 0,1,2,3.

Answer: The chain has a single recurrent state (i.e., it is irreducible). Further more, the single
recurrent state has at least one self-loop, so it is aperiodic. Therefore, the Markov chain has
limiting-state probabilities πi, i = 0,1,2,3.

(b) Determine a simple expression for the limiting-state probability π3 of State 3.
To receive full credit, you must explain your answer.
Depending on how you tackle this part, you may need only a small fraction of the space given to
you below.
Answer:
Method I: Brute Force Write the Balance Equations and the Normalization Equation governing

the limiting-state probabilities π0, . . . ,π3, and then solve. We can read the Balance Equations
from the Markov Chain diagram:

π0 = (1− p)π0 +(1− p)π1 +(1− p)π3

π1 = pπ0 + pπ3

π2 = pπ1 + pπ2

π3 = (1− p)π2

3

∑
i=0

πi = 1. Normalization Equation

13
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From class we know that the Balance Equations are linearly dependent; we don’t need all of
them. That’s why we need the Normalization Equation. Using standard techniques to solve
the linear equations yields π3 = p2(1− p).

Method II: Exploit the IID Nature of the Bits At any time n ≥ 3, it’s possible for the Markov
chain to be in State 3. In fact

Pr(Xn = 3) = Pr(Bn = 0,Bn−1 = 1,Bn−2 = 1).

But the bitstream’s underlying process is an independent Bernoulli, which is what makes the
bits independent. Accordingly, for every n≥ 3,

Pr(Xn = 3) = Pr(Bn = 0)Pr(Bn−1 = 1)Pr(Bn−2 = 1) = p2(1− p).

In fact, we can say

Pr(Xn = 3) =

{
0 n = 1,2
p2(1− p) n = 3,4,5, . . .

Hence, π3 = p2(1− p).
Method III: Long-Term Average View Another way involves thinking of the stationary distri-

butions as "long-term averages."
According to this view, for a string of length n, we can compute the expected number of 110’s
as p2(1− p)(n−2) out of n.

(c) For the remainder of this problem, we want to find the expected time E(N) until the first occurrence
of the string c = 110 in the bitstream.
Accordingly, we remove all the outgoing edges from State 3 in the original Markov chain, and
turn State 3 into an absorbing state having a self-loop probability of 1 as below.

0No Bit Found 1 "1" Found

2 "11" Found3"110" Found

p

p

1− p

1− p

p

1− p

1

Determine E(N), the expected time at which we first enter State 3—that is, the time at which the
string c = (1,1,0) occurs for the first time.
Hint: We recommend that you break down N into two parts. Let N = N02 +N23, where N02
denotes the number of steps until first passage into State 2, starting from State 0, and N23 denotes
the number of steps it takes to transition for the first time from State 2 to State 3. Show that

E(N02) =
1
p
+

1
p2 ,

14
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determine E(N23), and put your results together to obtain E(N).
Answer: Let ai be the expected number of steps until the Markov chains reaches the absorbing
State 3 for the first time, given that the initial state is i. Since in this process we begin in State 0,
we’re after E(N) = a0.
Write the system of three equations in three unknowns governing a0, a1, and a2 (note that by
definition a3 = 0), and solve for a0.

a0 = 1+(1− p)a0 + pa1

a1 = 1+(1− p)a0 + pa2

a2 = 1+ pa2

Method I: Brute Force Using standard techniques, we solve the system of three equations in
three unknowns to arrive at

a0 = E(N) =
1
p
+

1
p2 +

1
1− p

.

Method II: Notice the Salient Feature of State 2 The last equation in our system of equations
yields an immediate expression for a2—namely,

a2 =
1

1− p
.

This should not be surprising, especially in light of the Markov chain diagram where State 3
is absorbing. State 2 is a critical transitional state here. Once we enter State 2, the expected
absorption trajectory length turns into a first-order interarrival problem involving a Geometric
random variable.
To see this, notice that the first transition from State 2 to State 3 occurs when we encounter a 0
bit for the first time (after arriving in State 2). This happens with probability 1− p—which we
can think of as a probability of "success." Hence, once we’re in State 2, the expected number
of steps up to, and including, the first "success" (i.e., the first enounter with a 0 bit) is simply

the expected length of the first arrival in a Geometric distribution—that is,
1

1− p
.

We can now break the original problem into two segments. In particular, we can think of
N = N02 +N23, where N02 is the number of steps for first passage into State 2 (starting from
State 0), and N23 as the number of steps to transition from State 2 to State 3 for the first time—

and ultimate absorption. Accordingly, E(N) = E(N02)+E(N23). We know E(N23) =
1

1− p
.

So we must determine E(N02). This problem has a reduced size, relative to the original.
Method II(a) Since the random variable N02 refers to the number of steps, starting from

State 0, to enter State 2 for the first time, we redraw the Markov chain by removing State 3
and turning State 2 into an absorbing state. The redrawn Markov chain is shown below.

15



SID:

0No Bit Found 1 "1" Found

2 "11" Found

p

p

1− p

1

1− p

We now determine the expected absorption time to State 2, which is precisely the E(N02)

we’re after. To this we can then add E(N23) =
1

1− p
to arrive at the solution to the original

problem.
Let µi denote the expected time to absorption in State 2, given that the chain starts in State i.
Clearly, µ0 = E(N02), µ2 = 0, and we have the following system of two equations in two
unknowns:

µ0 = 1+(1− p)µ0 + p µ1

µ1 = 1+(1− p)µ0.

Solving this system yields

µ0 = E(N2) =
1
p
+

1
p2 .

Therefore, we arrive at the final solution

a0 = E(N) = E(N02)+E(N23) = µ0 +
1

1− p

E(N) =
1
p
+

1
p2︸ ︷︷ ︸

Expected first passage time to State 2

+
1

1− p︸ ︷︷ ︸
Expected absorption time into State 3, from State 2

.

Method II(b) The expected time for first passage into State 2 (which corresponds to two
consecutive 1 bits) can also be thought of as the expected time to the first occurrence of
two consecutive Heads in an IID sequence of coin tosses, where the probability of Heads
is p. So, think of a Heads as encountering a 1 bit. The tree diagram of the sample space,
where we condition on the outcome of the first coin toss (i.e., the first bit encountered in
the bitstream) allows us to determine the E(N02).

Tosses Until Two Consecutive Heads.pdf Tosses Until Two Consecutive Heads.pdf
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H1

T1

1‐p

H2

T2

E(N02|● )

2

E(N02)+2

E(N02)+1
Clearly,

E(N02) = 2p+ p(1− p)[E(N02)+2]+ (1− p)[E(N02)+1].

Solving for E(N02), we obtain:

E(N02) =
1+ p

p2 =
1
p
+

1
p2 .

We then add the 1
1−p to obtain the expected absorption time in State 3:

E(N) = E(N02)+
1

1− p

=
1
p
+

1
p2 +

1
1− p

.
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