Math 1B, Second Midterm Examination

 $2{:}00\text{-}3{:}00\mathrm{pm},$ N.Reshetikhin, October 24, 2016

Student's Name:

GSI's name:

Student's i.d. number:

 $1.(20\ points)$ For each of the following series determine whether the series is divergent, conditionally convergent, or absolutely convergent. Indicate which tests you used.

a) (10 points)

$$\sum_{n=1}^{\infty} (-1)^n \sin(\frac{1}{n})$$

b) (10 points)

$$\sum_{n=1}^{\infty} \frac{n \sin(n)}{(n^3 + 1)}$$

- $2.(20\ points)$ These are True-False questions. If the answer is True, you should explain why (concisely). If the answer is False, you should give a counter-example.
- a) (5 points) If the series $\sum_{n=1}^{\infty} a_n$ converges absolutely and $\sum_{n=1}^{\infty} b_n$ converges conditionally, then $\sum_{n=1}^{\infty} a_n b_n$ converges absolutely.
- b) (5 points) If the sequence $\{b_n\}$ is convergent and the sequence $\{a_n\}$ is monotonically decreasing, then the sequence $\{a_nb_n\}_{n=1}^{\infty}$ converges.
- c) (5 points) If the series $\sum_{n=1}^{\infty} a_n$ is conditionally convergent and the sequence $\{b_n\}$ is bounded and nonnegative, then the series $\sum_{n=1}^{\infty} a_n b_n$ converges.
- d) (5 points) If the series $\sum_{n=1}^{\infty} a_n$ converges, then the series $\sum_{n=1}^{\infty} a_n^4$ converges.

3.(20 points) Find the first three non-zero terms of the the Taylor series about x = 0 for

$$f(x) = \frac{e^x}{(1+x)}$$

 $4.(\it{20~points}) Find the interval of convergence for the power series$

$$\sum_{n=1}^{\infty} \frac{(1-x)^n}{n+5}$$

.

- 5.(20 points) Answer True or False. You do not have to show your work.
- a) (4 points) If $\sum_{n=1}^{\infty} a_n(x-2)^n$ converges at x=0, then it converges at x=3.
 - b) (4 points) If a series $\sum_{n=1}^{\infty} a_n 2^n$ diverges, then $\sum_{n=1}^{\infty} a_n (-2)^n$ diverges.
- c) (4 points) If the series $\sum_{n=1}^{\infty} a_n$ converges conditionally, then the radius of convergence of $\sum_{n=1}^{\infty} a_n (x-5)^n$ is 1.
- d) (4 points) It is possible that the series $\sum_{n=1}^{\infty} a_n x^n$ has infinite radius of convergence, but the series $\sum_{n=1}^{\infty} a_n^2 x^n$ has finite radius of convergence.
- e) (4 points) If the series $\sum_{n=1}^{\infty} a_n$ absolutely converges by the root test, then the radius of convergence of $\sum_{n=1}^{\infty} a_n^2 x^n$ is at least 1.