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Fall 2018 Midterm
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1 Finding the Centroid (3 parts, 20 points)

Let x1, . . . ,xn ∈ Rd. We consider computing the centroid of this dataset. Consider the loss
function

L(w) :=
1

2n

n∑
i=1

‖xi −w‖22.

(a) (5 points) First, we compute the gradient of the loss function. Show that

∇wL(w) = w − x̄,

where x̄ := 1
n

∑n
i=1 xi.

Solution: We have that∇w‖xi −w‖22 = ∇(x>i xi − 2x>i w + ‖w‖22) = 2w − 2xi. Hence,

∇wL(w) =
1

2n

n∑
i=1

(2w − 2xi) = w − x̄.

(b) (5 points) Show that the minimizer of the loss function is given by x̄, i.e. arg minw∈Rd L(w) =
x̄. Make sure to justify your answer.

Solution: Since L is convex, at the minimum the gradient is equal to zero. Thus, by the
previous problem, this is when x = x̄.
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(c) (10 points) Suppose x1, . . . ,xn are identically and independently distributed according to a
normal distribution with mean x∗ and diagonal covariance, i.e. xi ∼ N (x∗, σ

2Id) for i =
1, . . . , n.
Calculate E[‖x̄− x∗‖22].

Solution:

E[‖x̄− x∗‖22] = E[‖ 1

n

n∑
i=1

xi − x∗‖2]

= E[‖ 1

n

n∑
i=1

(xi − x∗)‖2]

=
1

n2
E[‖

n∑
i=1

(xi − x∗)‖2]

=
1

n2
E[

n∑
i=1

‖(xi − x∗)‖2 + 2
∑
i 6=j

〈xi − x∗,xj − x∗〉]

=
1

n2

 n∑
i=1

E[‖(xi − x∗)‖2 + 2
∑
i<j

E[〈xi − x∗,xj − x∗〉]


=

1

n2

 n∑
i=1

E[‖(xi − x∗)‖2]


=

1

n2

 n∑
i=1

σ2d


= σ2d/n.
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2 A Spectral View of Linear Regression (5 parts, 25 points)

Assume we are given training data in the form of the matrix X ∈ Rn×d where the rows are the d-
dimensional feature vectors xi and y ∈ Rn which is the vector of the corresponding target values.
We do not assume that X is full rank, and take its rank to be r. Note that d ≤ n.

Recall that the compact singular value decomposition is X = UΣV> where U ∈ Rn×d, V ∈
Rd×d, and Σ = diag(σ1, . . . , σd). We denote the n-dimensional column vectors of U by ui and
the d-dimensional column vectors of V by vi. Furthermore, let σ1 ≥ σ2 ≥ · · · ≥ σd.

In this problem, we consider the result of two different linear regression techniques: ridge regres-
sion and applying ordinary least squares after using PCA to reduce the feature dimension from d
to k (PCA-OLS). In particular, we compare the predicted value ŷ of a new datapoint x by writing
an expression of the form:

ŷ(x) = x>w = x>
d∑
i=1

ρ(σi)viu
>
i y. (1)

In the following questions you will find the form of the spectral function ρ(σ) for ridge regression
and PCA-OLS.

(a) (5 points) Recall that the ridge regression optimizer is defined (for λ > 0) as

wridge = arg min
w∈Rd

‖Xw − y‖22 + λ‖w‖22 .

Show that the closed-form solution for wridge has the form

wridge = V diag(ρλ(σ1), . . . , ρλ(σd))U
>y,

and find the ridge-regression spectral function ρλ.

Solution: First, recall that
wridge = (X>X + λI)−1X>y .

Then plugging in the SVD of X,

wridge = (VΣ2V> + λI)−1VΣU>y

= V(Σ2 + λI)−1ΣU>y

Thus we see that
ρλ(σi) =

σi
λ+ σ2

i

.
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(b) (5 points) Using the expression for wridge from the previous part, write down the ridge re-
gression predictor function in the form of (1).

Solution: The resulting prediction for ridge reads

ŷridge = x>V diag
( σi
λ+ σ2

i

)
U>y

= x>
d∑
i=1

σi
λ+ σ2

i

viu
>
i y

(c) (5 points) The ordinary least squares problem on the reduced k-dimensional PCA feature space
(PCA-OLS) can be written as

w̃PCA = arg min
w∈Rd

‖XVkw − y‖2

where the columns of Vk consist of the first k right singular vectors of X. This expression
embeds the raw feature vectors onto the top k principle components by the transformation
V>k xi. Assume the PCA dimension is less than the rank of the data matrix, k ≤ r.

Write down the expression for the optimizer w̃PCA ∈ Rk in terms of U, y and the singular
values of X.

Hint: k ≤ r implies that the matrix of PCA embedded data matrix XVk is full rank.

Solution: Apply OLS on the new matrix XVk to obtain

w̃PCA = [(XVk)
>(XVk)]

−1(XVk)
>y

= [V>k VΣ2V>Vk]
−1V>k X>y

= Σ−1k U>k y
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(d) (5 points) Now, use the expression for w̃PCA from the previous part to write down the predic-
tor function in the form of (1). In doing so, you should define the form of the PCA-OLS
spectral function ρk.

Solution: The resulting prediction for PCA reads (note that you need to project it first!)

ŷPCA = x>Vkw̃PCA

= x>VkΣ
−1
k U>k y

= x>
k∑
i=1

1

σi
viu

>
i y

ρk(σi) =

{
1
σi

i ≤ k

0 i > k

(e) (5 points) The ridge regression regularization parameter λ and the PCA dimension k are both
hyperparameters that affect the resulting model and predictions. In practice, we would tune
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these parameters based on the dataset we were given. Briefly describe a principled method
for choosing λ.

Solution: Cross validation or holdout
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3 Classification (3 parts, 25 points)

(a) (5 points) The plots below show labeled data {xi}ni=1, where xi ∈ R2. For each plot, points
corresponding to yi = −1 are denoted by an O, and points corresponding to yi = +1 are
denoted by an X. The origin is labeled as the point (0,0). Now, consider classifiers of the
form

φw(x) =

{
+1, w>x ≥ 0

−1, w>x < 0

where w ∈ R2.

For each of the five plots, determine if the data can be perfectly classified by a classifier
of this form.

• If so, draw the decision boundary of the classifier on the plot.
• If not, write “not separable” in the appropriate cell in the following table.

Plot Separable?

1

2

3

4

5
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(a) Plot 1 (b) Plot 2

(c) Plot 3 (d) Plot 4

(e) Plot 5

Figure 1: Problem 3(a)

Solution: Only the second and the fourth are separable by a linear (not affine!) classifier.

Midterm, ©UCB CS 189, Fall 2018. All Rights Reserved. This may not be publicly shared without explicit permission. 9



(b) (10 points) Consider the data shown in Figure 2.

Figure 2: Problem 3(b)

Again, points corresponding to yi = −1 are denoted by an O, and points corresponding to
yi = +1 are denoted by an X. Note that the O points (and only the O points) are contained
between two circles of radii 2 and 4, both centered at the point (5, 7). This data can not be
perfectly classified by a classifier described in the previous problem. However, we can make
a nonlinear transformation of the data to make it easier to classify. Specifically, we seek a
transformation ϕ(x) : R2 → R such that each transformed point zi = ϕ(xi) can be perfectly
classified by a classifier hb : R→ {−1,+1} of the form

hb(z) =

{
+1, z ≥ b

−1, z < b
.

(i) Give such a transformation ϕ(x). (You should not need to estimate exact locations of
points.)

(ii) Plot the (nonlinear) decision boundary on the original plot (Figure 2).

(iii) Plot the transformed data and the decision boundary in the transformed space R, i.e.
on a number line (you should have a tick mark for 0). This plot should be qualitative
to illustrate the situation; you do not need to find an explicit b for the decision boundary,
nor do you need to exactly plot every transformed point.
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Solution: Some example correct solutions for (i) and the corresponding plots (iii):

ϕ(x) = |(x1 − 5)2 + (x2 − 7)2 − 10|
ϕ(x) = |

√
(x1 − 5)2 + (x2 − 7)2 − 3|

ϕ(x) = 1− 1{2 ≤
√

(x1 − 5)2 + (x2 − 7)2 ≤ 4} .

The (not connected) decision boundary for part (ii) should be the two circles of radii 2 and 4
centered at (5, 7).
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(c) (10 points) Now consider classifying two data points x1 = (a, b), x2 = (−a,−b), with labels
y1 = +1 and y2 = −1, respectively, shown in Figure 3.

Figure 3: Problem 3(c)

For this data, calculate the form of the maximum margin separating hyperplane which
goes through the origin. Make sure you justify your answer mathematically. Recall that
for linear classifiers, the maximum margin is defined as:

max
w∈Rd

min
1≤i≤n

(
w>xi
‖w‖2

yi

)

Solution: There are only two data points, so the margin is

max
w

min
i=1,2

(
w>xi
‖w‖2

yi

)

= max
w:‖w‖2=1

min

w>
(
a
b

)
(1), w>

(
−a
−b

)
(−1)


= max

w:‖w‖2=1
min

w>
(
a
b

)
, w>

(
a
b

)
= max

w:‖w‖2=1
w>

(
a
b

)
The maximizing w is the unit vector in the direction (a, b)>, so we have that the maximizing
hyperplane is defined by

{x : x>w = 0}
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where w =

(
a
b

)
.
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4 Checking Kernels (2 parts, 10 points)

Recall that for a function k to be a valid kernel, it must be symmetric in its arguments and its Gram
matrices must be positive semi-definite. More precisely, for every sample x1,x2, . . . ,xn ∈ Rd, the
Gram matrix

K =

k(x1,x1) · · · k(x1,xn)
... k(xi,xj)

...
k(xn,x1) · · · k(xn,xn)


must be positive semi-definite. Also, recall that a matrix is positive semi-definite if it is symmetric
and all its eigenvalues are non-negative.

(a) (5 points) Give an example of two positive semi-definite matrices A1 and A2 in R2×2 such
that A1 − A2 is not positive semi-definite.
As a consequence, show that the function k defined by k(xi,xj) = k1(xi,xj)− k2(xi,xj) is
not necessarily a kernel even when k1 and k2 are valid kernels.

Solution: Take A1 = 02 and A2 = I2. We can define k1 and k2 to have 2 × 2 Gram matrices
equal to A1 and A2 respectively.

(b) (5 points) Show that the function k defined by k(xi,xj) =
∥∥xi − xj

∥∥2
2

is not a valid kernel.

Solution: Consider the dataset {x1, x2} = {0, 1}. The gram matrix induced by k on this

dataset is

[
0 1
1 0

]
. The eigenvalues of this matrix are −1, 1, which means this matrix is not

positive semidefinite. Hence k is not a valid kernel.
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