Math W53 Final Exam solutions

1. Find the minimum and maximum values of the function

$$
f(x, y, z)=x+y+z
$$

subject to the constraint

$$
x^{2}+y^{2}+2 z^{2} \leq 10 .
$$

(You do not need to prove that minimum and maximum values exist.) Solution. Candidates for minima and maxima are critical points of f on the interior of the region $x^{2}+y^{2}+z^{2} \leq 10$, and minima and maxima on the boundary. Since $f_{x}=f_{y}=f_{z}=1$, which never vanishes, the function f has no critical points. The boundary of the region is the surface $g(x, y, z)=x^{2}+y^{2}+2 z^{2}=10$. We find minima and maxima on this surface using Lagrange multipliers. The Lagrange multiplier equation $\nabla f=\lambda \nabla g$ gives $1=2 \lambda x=2 \lambda y=4 \lambda z$. It follows that $x=y=1 /(2 \lambda)$ and $z=1 /(4 \lambda)$. Plugging in to the constraint equation $g(x, y, z)=10$ gives $5 /\left(8 \lambda^{2}\right)=10$, so $\lambda= \pm 1 / 4$. We then obtain the two points $(x, y, z)=(2,2,1)$ and $(x, y, z)=(-2,-2,-1)$. On the first point $f=5$, and on the second point $f=-5$. Thus the minimum is -5 and the maximum is 5 .
2. Let S be a surface which is contained in the plane $z=x+y$, oriented upward. Suppose that S has area 2018. Consider the constant vector field $\mathbf{F}=\langle 3,4,5\rangle$. Calculate

$$
\iint_{S} \mathbf{F} \cdot d \mathbf{S}
$$

Solution. By the definition of flux, $\iint_{S} \mathbf{F} \cdot d \mathbf{S}=\iint_{S}(\mathbf{F} \cdot \mathbf{n}) d S$, where \mathbf{n} is the oriented unit normal vector. Since the surface is the graph of $g(x, y)=x+y$, an oriented normal vector is $\left\langle-g_{x},-g_{y}, 1\right\rangle=\langle-1,-1,1\rangle$. Normalizing this we obtain $\mathbf{n}=\frac{1}{\sqrt{3}}\langle-1,-1,1\rangle$. Then $\mathbf{F} \cdot \mathbf{n}=-2 / \sqrt{3}$. Thus $\iint_{S}(\mathbf{F} \cdot \mathbf{n}) d S=\iint_{S}(-2 / \sqrt{3}) d S=(-2 / \sqrt{3}) \operatorname{area}(S)=-4036 / \sqrt{3}$.
3. Calculate the iterated integral

$$
\int_{0}^{4} \int_{\sqrt{x}}^{2} e^{y^{3}} d y d x
$$

Solution. We change the order of integration. The integral is over the region $0 \leq x \leq 4$ and $\sqrt{x} \leq y \leq 2$. Thus it is bounded by the y axis, the line $y=2$, and the curve $y=\sqrt{x}$. When $y \geq 0$, the latter equation is equivalent to $x=y^{2}$. Thus the integral is

$$
\int_{0}^{2} \int_{0}^{y^{2}} e^{y^{3}} d x d y=\int_{0}^{2} y^{2} e^{y^{3}} d y=\left.\frac{1}{3} e^{y^{3}}\right|_{y=0} ^{y=2}=\frac{1}{3}\left(e^{8}-1\right)
$$

4. Let E be the region defined by the inequalities

$$
x^{2}+y^{2}+z^{2} \leq 4, \quad 0 \leq y \leq x, \quad z \geq 0
$$

Calculate the total mass of E if the mass density is z^{2}.
Solution. In spherical coordinates, the region E is defined by the inequalities $0 \leq \rho \leq 2,0 \leq \theta \leq \pi / 4$, and $0 \leq \phi \leq \pi / 2$. Thus the total mass is

$$
\begin{aligned}
\int_{0}^{\pi / 2} \int_{0}^{\pi / 4} \int_{0}^{2}(\rho \cos \phi)^{2} \rho^{2} \sin \phi d \rho d \theta d \phi & =\int_{0}^{\pi / 2} \int_{0}^{\pi / 4} \int_{0}^{2} \rho^{4} \cos ^{2} \phi \sin \phi d \rho d \theta d \phi \\
& =\frac{32}{5} \int_{0}^{\pi / 2} \int_{0}^{\pi / 4} \cos ^{2} \phi \sin \phi d \theta d \phi \\
& =\frac{8 \pi}{5} \int_{0}^{\pi / 2} \cos ^{2} \phi \sin \phi d \phi \\
& =\left.\frac{-8 \pi}{15} \cos ^{3} \phi\right|_{\phi=0} ^{\phi=\pi / 2} \\
& =\frac{8 \pi}{15}
\end{aligned}
$$

5. Find the tangent plane to the parametrized surface

$$
\mathbf{r}(u, v)=\left\langle u^{2}-1, u v, v^{3}\right\rangle
$$

at the point $(3,4,8)$. Please give an answer of the form $a x+b y+c z=d$. Solution. The equation for the plane is $\mathbf{n} \cdot\left(\mathbf{r}-\mathbf{r}_{0}\right)=0$ where $\mathbf{r}_{0}=$ $\langle 3,4,8\rangle$ and \mathbf{n} is a normal vector to the plane at this point. The point $\langle 3,4,8\rangle$ corresponds to $u=v=2$. A normal vector is then $\mathbf{n}=\mathbf{r}_{u} \times \mathbf{r}_{v}$ evaluted at $(u, v)=(2,2)$. We have

$$
\begin{aligned}
\mathbf{r}_{u}(2,2) & =\left.\langle 2 u, v, 0\rangle\right|_{(u, v)=(2,2)}=\langle 4,2,0\rangle \\
\mathbf{r}_{v}(2,2) & =\left.\left\langle 0, u, 3 v^{2}\right\rangle\right|_{(u, v)=(2,2)}=\langle 0,2,12\rangle .
\end{aligned}
$$

Then $\mathbf{n}=\langle 4,2,0\rangle \times\langle 0,2,12\rangle=\langle 24,-48,8\rangle$. To make the arithmetic simpler we can rescale this to $\mathbf{n}=\langle 3,-6,1\rangle$. The equation for the plane is then

$$
\langle 3,-6,1\rangle \cdot\langle x-3, y-4, z-8\rangle=0
$$

which expands out to

$$
3 x-6 y+z=-7
$$

(Any nonzero constant multiple multiple of this equation would also be correct.)
6. Let C be the curve of intersection of the cylinder $x^{2}+y^{2}=1$ and the plane $z=2 x+3 y$, oriented counterclockwise when viewed from above. Let

$$
\mathbf{F}=\left\langle x^{2018}+y, y^{2018}+z, z^{2018}+x\right\rangle .
$$

Calculate $\int_{C} \mathbf{F} \cdot d \mathbf{r}$.
Solution. We use Stokes theorem. Let S be the part of the plane $z=2 x+3 y$ where $x^{2}+y^{2} \leq 1$, oriented upward. Then by Stokes theorem,

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}=\iint_{S}(\nabla \times \mathbf{F}) \cdot d \mathbf{S}=\iint_{S}\langle-1,-1,-1\rangle \cdot d \mathbf{S} .
$$

We can parametrize the surface S as $\mathbf{r}(x, y)=\langle x, y, 2 x+3 y\rangle$. Then $\mathbf{r}_{x} \times \mathbf{r}_{y}=\langle-2,-3,1\rangle$ so

$$
\begin{aligned}
\iint_{S}\langle-1,-1,-1\rangle \cdot d \mathbf{S} & =\iint_{x^{2}+y^{2} \leq 1}\langle-1,-1,-1\rangle \cdot\langle-2,-3,1\rangle d A \\
& =\iint_{x^{2}+y^{2} \leq 1} 4 d A \\
& =4 \pi .
\end{aligned}
$$

7. Let D be the region in the plane where $x^{2}+2 y^{2} \leq 1$. Calculate the double integral

$$
\iint_{D}\left(x^{2}+2 y^{2}\right)^{2018} d A
$$

Solution. We make the change of variables $x=u, y=v / \sqrt{2}$. Then the region D in the x, y plane corresponds to the region $u^{2}+v^{2} \leq 1$ in the u, v plane. The Jacobian of the transformation is $1 / \sqrt{2}$. Thus we get

$$
\iint_{D}\left(x^{2}+2 y^{2}\right)^{2018} D A=\frac{1}{\sqrt{2}} \iint_{u^{2}+v^{2} \leq 1}\left(u^{2}+v^{2}\right)^{2018} d A
$$

We evaluate the integral on the right using polar coordinates in the u, v plane to get

$$
\frac{1}{\sqrt{2}} \int_{0}^{2 \pi} \int_{0}^{1} r^{4037} d r=\left(\frac{1}{\sqrt{2}}\right)(2 \pi)\left(\frac{1}{4038}\right)=\frac{\pi}{2019 \sqrt{2}} .
$$

8. Calculate the flux $\iint_{S} \mathbf{F} \cdot d \mathbf{S}$, where S is the hemisphere

$$
x^{2}+y^{2}+z^{2}=1, \quad z \geq 0
$$

oriented upwards, and

$$
\mathbf{F}=\langle x+\sin y, y+\cos z, z+1\rangle .
$$

Solution. Let E be the half-ball $x^{2}+y^{2}+z^{2} \leq 1, z \geq 0$, and let S^{\prime} be the surface $x^{2}+y^{2} \leq 1, z=0$, oriented upward. Then by the Divergence Theorem, we have

$$
\iint_{S} \mathbf{F} \cdot d \mathbf{S}=\iiint_{E}(\operatorname{div} \mathbf{F}) d V+\iint_{S^{\prime}} \mathbf{F} \cdot d \mathbf{S} .
$$

Now $\operatorname{div} \mathbf{F}=3$, so the first integral on the right is 3 times the volume of the half-ball, which is 2π. And the second integral on the right is the integral of 1 over the unit disk, which is π. Thus the answer is 3π.
9. Suppose a parametrized curve $\mathbf{r}(t)=\langle x(t), y(t), z(t)\rangle$ for $0 \leq t \leq 1$ satisfies the equation

$$
x x^{\prime}(t)+y y^{\prime}(t)+z z^{\prime}(t)=0
$$

for all t. If $x(0)=y(0)=z(0)=3$ and $x(1)=y(1)=2$, find $|z(1)|$.
Solution. The given equation (times 2) is equivalent to

$$
\frac{d}{d t}\left(x^{2}+y^{2}+z^{2}\right)=0
$$

It follows that $x^{2}+y^{2}+z^{2}$ is constant on the curve. Since this constant equals 27 at $t=0$, it also equals 27 at $t=1$. Since $x(1)^{2}+y(1)^{2}=8$, we must have $z(1)^{2}=19$, so $|z(1)|=\sqrt{19}$.

10 . Let f be a differentiable function on \mathbb{R}^{2} such that

$$
\frac{\partial f}{\partial x}(x, y)=\frac{\partial f}{\partial y}(x, y)
$$

for all x, y. Suppose also that $f(2,3)=6$. Compute $f(4,1)$. As usual, justify your answer.
Solution. Let C be the line segment from $(2,3)$ to $(4,1)$. For any parametrization of this curve, we have $x^{\prime}(t)=-y^{\prime}(t)$. It then follows that $\int_{C}(\nabla f) \cdot d \mathbf{r}=0$. So by the Fundamental Theorem of Line Integrals, $f(4,1)=f(2,3)=6$.
Alternate solution. By the given information and the Chain Rule, $\frac{d}{d t} f(t, 5-t)=0$, so $f(t, 5-t)$ does not depend on t. Plugging in $t=4$ and $t=2$ gives $f(4,1)=f(2,3)$ as before.

