Phys 7B Lec 03 Final Exam

TOTAL POINTS

123 /140

QUESTION 1

1Problem 114 /20
v + 5 pts Part A) Correct
v + 5 pts Part B) Correct

+ 5 pts Part C) Correct

+ 5 pts Part D) Correct

+1pts A) Q=mcAT

+1 pts A) Sum of Q =0/ Net heat transferred = 0

+ 1 pts A) Correct final temperature calculation

+ 2 pts A) Sufficient Explanation given calculation of
temperature

+ 2 pts B) Equation for entropy dS= dQ/T

+ 2 pts B) Equation for net entropy change of the
system (iron with water)

+ 1 pts B)Correct calculation of entropy (If a previous
quantity was calculated wrong it will be taken into
account)

+ 3 pts C) Thorough explanation involving the
second law of thermodynamics (Points may be
awarded if AS was calculated to be < 0 but explained)

+ 2 pts C) Correct/Consistent calculation of AS >0
(SHOW EXPLICITLY)

v +1 pts D) R_new = 1.5 R at melting point condition
(or 2.5 R)

v + 1 pts D) AR equation

v + 2 pts D) Correct symbolic answer (Either using
AR =0.5 or AR =1.5)

+ 1 pts D) Correct/Consistent numerical value for T (
or consistent with derived equation)

+ 0 pts Click here to replace this description.

QUESTION 2
2 Problem 2 207/ 20

+ 2 pts Part (a): Writing down the correct formula for

efficiency

+ 1 pts Part (a): Partially writing down the correct
formula for efficiency, but not making it clear what Q
is, (or some other incomplete expression)

+ 1 pts Part (a): In calculating heat along 1->2, set
heat equal to net work (or other partial credit for heat
output 1->2 calculation). Note, if you just calculated
the net work, this and the following 3 rubric items do
not apply (you can either calculate net work, or heat
output)

+ 1 pts Part (a): Correct calculation of heat output
from1->2

+ 1 pts Part (a): In calculating heat along 4->1, used
Q =C_P delta T (or other partial credit for heat output
4->1 calculation).

+ 1 pts Part (a): Correctly calculating heat output 4 ->

+ 1 pts Part (a): Correct calculation of work along 1-
>2. Again, disregard this and the following 3 rubric
items if you got credit/attempted the rubric items
above

+ 1 pts Part (a): Correct calculation of work along 2-
>3

+ 1 pts Part (a): Correct calculation of work along 3-
>4

+ 1 pts Part (a): Correct calculation of work along 4-
>1

+ 1 pts Part (a): In calculating heat input from 2->3,
used Q = C_p delta T (or some other partial credit)

+ 1 pts Part (a): Correctly calculated the heat input
from 2->3

+ 1 pts Part (a): In calculating the heat input in 3->4,
set the heat equal to work done (or other partial
credit for 3->4 heat calculation)

+ 1 pts Part (a): Correctly calculated the heat input
from3->4

+ 1 pts Part (a): Partial credit for attempting to write



quantities in terms of common pressure and volume
(usually P_1V_1). The calculation is either wrong or
incomplete

- 2 pts Part (a): Incorrect substitution of temperature
in terms of P_1and V_1 (gives correct final answer,
but units of heat are off)

- 2 pts Part (a): Plugging in all heats as opposed to
just heats put in to the system into the efficiency
formula, or switching g_in and g_out, or otherwise
incorrect substitution into efficiency equation (you
may have calculated all the heats correctly, but then
only chose to plug one of them in)

+ 3 pts Part (a): Writing net work/heat in terms of
common reference pressures and volumes (usually
P_1V_1) that cancel out

+ 1 pts Part (a): Correct numerical value

+ 3 pts Part (b): Correct Carnot efficiency

+ 1 pts Part (b): Partial credit for1-T_L/T_H

+ 2 pts Part (b): Partial credit if 1- T_L/T_H given and
the wrong numerical value is obtained because
temperatures are calculated incorrectly in part (a)

+ 1 pts Part (b): Partial credit for commenting on the
ordering between the two values, but not offering any
explanation as to why this ordering is the case, or
explanation not a good one

+ 2 pts Part (b): Attempted explanation but not quite
there

+ 3 pts Part (b): Correct explanation (something
along the lines of Carnot engine is the most efficient
engine, or that since the Ericsson cycle does not have
all heat exchange at fixed temperatures, it will not
saturate the Carnot efficiency)

+ 0 pts no points acquired
v + 20 pts Full credit

QUESTION 3
3 Problem 3 20/20

v + 20 pts Full credit
+ 0 pts Null: zero credit
+ 14 pts (a) all correct
+ 3 pts (a) recognize spherical symmetry to say E is

radial

+ 2 pts (a) recognize spherical symmetry to say E is
a constant at a given radius

+ 2 pts (a, partial) almost there with the symmetry

+ 2 pts (a) correctly write down Gauss' Law

+ 2 pts (a) correct setup of Gauss' Law in this
problem and simplification given the symmetries

+ 2 pts (a) correct integral setup for total charge
enclosed by Gaussian sphere

+ 2 pts (a) correct charge enclosed by a sphere of
radius r

+ 1 pts (a, partial) partial credit for charge enclosed

+ 1 pts (a) correct E magnitude

+ 6 pts (b) all correct

+ 2 pts (b) recognize that the total charge of the
electron cloud must be -e for the electron's charge

+ 2 pts (b) setup the integral to find the total charge
of the cloud correctly

+ 2 pts (b) correct answer for the constant A

+ 1 pts (b, partial) partial credit for the integral setup

and/or arithmetic in solving for A

QUESTION 4
4 Problem 4 14/ 20

+ 20 pts Response completely correct

+ 12 pts Part (a): Response totally correct (shortcut
for grader)
v + 2 pts Part (a): Identifying the magnitude of the
acceleration from the electric field
v + 1 pts Part (a): Identifying the direction of the
electric force (reporting a positive deflection)
v + 1 pts Part (a): Correctly using the horizontal
velocity to find the time spent moving through the
system

+ 2 pts Part (a): breaking up the trajectory into two
regions, within and outside the field, and recognizing
a qualitatively different contribution to to the
deflection from both
v + 2 pts Part (a): Correct kinematic approach for
region 1 (within the field)

+ 1 pts Part (a): Partial credit for region 1

+ 1 pts Part (a): Correct delta y from region 1

+ 2 pts Part (a): Correct kinematic approach for



region 2 (outside the field)

+ 1 pts Part (a): Partial credit for region 2

+ 1 pts Part (a): Correct delta y from region 2

+ 1 pts Part (b): Realizing that electric and magnetic
forces cancel out

+ 1 pts Part (b): Writing down the electric force

+ 1 pts Part (b): Writing down the magnetic force

+ 1 pts Part (b): Finding the right velocity such that
they cancel
v + 4 pts Part (b): Response totally correct (shortcut
for grader)

+ 2 pts Part (c): Description of phase 1

+ 1 pts Part (c¢): Partial credit for phase 1

+ 2 pts Part (c): Description of phase 2

+ 1 pts Part (c): Partial credit for phase 2
v + 4 pts Part(c): Response totally correct (shortcut
for grader)

+ 0 pts No points accrued

QUESTION 5

5 Problem 5 16/ 20

+1 pts (a) Correct charge on ring: $$dg = \sigma 2
\pi rdr=(2Q/R"2) r dr$$

+ 2 pts (a) Correct expression for the current on the
ring: $$dI = f dg = \frac\omega Q}{\pi R"2} r dr$$
v + 1 pts (a) Deduction for messed up current
v + 1 pts (a) Noting $$d\mu = dl A$$ where $$A$S is
area *enclosed*

+1 pts (a) Final answer $$d\mu = \frac{\omega Q
r3YR"2} dr$$
v + 3 pts (b) To find total magnetic moment, need to
integrate previous answer from $$r = 0$$ to $$r =
R$S.
v + 2 pts (b) Obtaining correct answer of $$\mu =
\frac{\omega QR"2}{4}$$ (full credit if procedure is
right, unless answer makes no sense)
v + 1 pts (c) Recognizing need for Biot-Savart
v +1 pts (c) Using $$dI = r d\theta$$ (line element of
current), $$r_{sep)} = \sqrt{r*2+x"2}$$ (separation
vector magnitude)
v +1 pts (c) Recognizing only the $$x$$-component
of $$B$$ survives and multiplying overall result by

$$\frac{r\sqrt{r*2+x"2)}$$
v + 2 pts (c) Integrate over $$\theta$$ to get a factor
of $$2\pi$$ and plug in the current from part (a) to
get $$dB_x = \frac\mu_0 \omega Q r*3 dr}{2\pi R"2
(r"2+x*2)N3/21}$$ (full credit if process is correct)
v + 2 pts (c) For $$x\gg R$$, drop terms quadratic in
$$r/x$$ to get $$dB_x \approx \frac{\mu_O \omega
Q "3 dr){2\pi R*2 x"3}$$

- 0.5 pts (c) Very slight errors

- 1.5 pts (c) Slight errors

+ 2 pts (c) Questionable work with some semblance
of correctness
v + 2 pts (d) Integrate previous answer from $$0$$
to $$R$S.
v + 1 pts (d) Obtain final answer $$B_x = \frac(\mu_0O
\mu)}{2\pi x*3}$$ after simplifying in terms of
magnetic moment (full credit if procedure correct,
unless answer makes no sense)

- 0.5 pts (d) Not simplifying in terms of $$\mu$$
v -1 pts Not indicating that *all* quantities in this
problem point in the $$x$$-direction

+ 0 pts No points awarded

QUESTION 6
6 Problem 6 20/ 20

v + 4 pts Part (a): All correct

v + 6 pts Part (b): All correct

v + 5 pts Part (c): All correct

v + 5 pts Part (d): All correct
+ 2 pts Part (a): Lenz's law
+ 2 pts Part (a): Correct direction
+ 3 pts Part (b): Biot-Sawart Law
+ 2 pts Part (b): Correct result
+ 1 pts Part (b): Correct direction
+ 2 pts Part
+ 2 pts Part

c): Correct flux

—_ o~

)
c): Correct emf

+ 1 pts Part (c): Correct direction

+ 2 pts Part (d): Know Kirchoff's Law
+ 3 pts Part (d): Correct equation

+ 0 pts No point

QUESTION 7



7 Problem 7 19/ 20

+10 pts A) Correct
v + 5 pts B) Correct
v + 5 pts C) Correct
v + 2 pts A) Ampeére's Law (Justification + Choice of
Loop)
v + 1 pts A) Constant Magnitude of B at constant
radii

+ 1 pts A) Correct Direction of B Field
v + 2 pts A) Correct B Fieldr<a
v +2 pts A) Correct BFielda<r<b
v + 2 pts A) Correct B fieldb <r

+ 2 pts B) Correct equation for energy stored in a
spatially dependent magnetic field

+ 1 pts B) Using correct choice of B field from A)

+ 2 pts B) Correct calculation of energy w.r.t B field
found and correct equation

+ 2 pts C) Equation for relationship between energy
and inductance

+ 1 pts C) Correct energy or energy from part b

+ 2 pts C) Correct calculation w.r.t energy found

+ 0 pts Click here to replace this description.
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PHYSICS 7B, Lecture 3 - Spring 2018
Final Exam, C. Bordel

Tuesday May 8%, 8-11 am
o Student name: o Discussion section #:
o StudentID #: o Name of your GSI:

Make sure you show all your work and justify your answers
in order to get full credit!

Math Information Sheet
. . dx 1 x x
sin2x = 2 sinx cosx 1] == Jxexp(— =)dx = —a exp (—>)(a+x)
dx dx x
= 2y . —_— = — P
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Problem 1 - Calorimetry and Thermometry (20 pts)
Part 1:

After being forged, a hot iron horseshoe of mass m, specific heat C; and initial temperature
T: is dropped into a large bucket of cold water of mass m. (m2=~ 100 mi), specific heat C; (C;
~10 C;) and initial temperature T; (T2~ T/50). You may assume that water and horseshoe

do not experience any significant heat exchange with their surroundings.
a- Explain why no phase transition occurs.
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b- Determine the change in entropy of the system from the moment the horseshoe gets
dropped into the water to a few hours later.
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c- Explain the sign of your result, given that Ln50~4. .
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Part 2:

A resistance thermometer, made of a platinum wire of constant cross-sectional area, is used
to determine the melting point of indium. The resistance of the platinum wire is Ry at room
temperature (To) and increases by a factor of 1.5 as indium starts to melt (T). You may
assume that the change in length is negligible and that the temperature coefficient of
resistivity a is constant in the temperature range [To, Tw].
d- Determine symbolically the melting point of indium, then find an approximate
numerical value (in °C or K) for Ty, given that the temperature coefficient of resistivity
is on the order of 4 x 103 /K for platinum at room temperature.
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Problem 2 - Thermodynamic cycle (20 pts)

Largely forgotten over the course of the 20t century, the Ericsson engine is regaining some
interest due the development of new technologies. n moles of a monatomic ideal gas
undergo an Ericsson cycle, which is described as follows:

1—2: isothermal compression from pressure P; and volume V; to pressure P»=3 P;

2—3: isobaric expansion with a twofold volume increase

3—4: isothermal expansion

4—1: isobaric compression

a- Determine the efficiency of the engine, symbolically and numerically, assuming Ln3~1.
b
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b- Calculate numerically the efficiency of the Carnot engine operating between the same
two temperatures. Explam the ranking between the two values
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Problem 3 - Hydrogen atom (20 pts)
Neutral hydrogen can be modeled as a positive point charge +¢, located at r=0, surrounded

by a distribution of negative charge with volume density pu(r) = -A/r? exp(-21/a0) beyond the
radial distance ap , called the Bohr radius. r is the radial distance measured from the
nucleus, A is a positive constant to be determined, and exp is the exponential function.

a- Determine the electric field, in magnitude and direction, at a distance r>a from the
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Problem 4 - Charge trajectory (20 pts)

The apparatus shown in figure 1 is set up
to reproduce Thomson's experiment. In a
highly evacuated glass tube, a beam of
electrons (mass m and charge -), all
moving in the same direction with
speed vo, passes between two parallel
plates of length d (also parallel to the
initial velocity of the electrons) and
strikes a screen at a distance L from the
end of the plates and perpendicular to
them. Ay is the distance between the
point where the beam strikes the screen
when there is no electric field between the
plates and the point where the beam
strikes the screen when a uniform electric
field of magnitudeEois established
between the plates. You may assume that
the electric field is zero outside the region
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between the plates and that vo is large
enough that all the particles
systematically hit the screen.

Figure 1

a- Determine the distance Ay.



Now the entire apparatus is placed inside
a region of magnetic field of
magnitude Bp. The magnetic field is
perpendicular to the electric field and
directed straight into the plane of the
figure, as shown in figure 2. The value
of By is adjusted so that no deflection of
the electron beam is observed on the
screen.

b- Determine the speed vy of the electrons.
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Now suppose you carry out a second experiment with a different beam that contains two
types of particles. Both types have the same mass m, but one has charge 4 and the other has
charge 24. The beam is filtered, such that both types of particle have the same speed. As in
the previous experiment, initially only the electric field is imposed; then, in the second
phase of the experiment, the magnetic field is tuned in order to exactly cancel the effect of
the electric field. Assume that both types of particle reach the screen in each case.

c- Explain qualitatively what would be observed on the screen in each phase of this

experiment.
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Problem 5 - Spinning wheel (20 pts)

A non-conducting circular disk of
negligible thickness and radius R carries a
uniformly distributed electric charge Q.
The disk spins about its symmetry axis
with angular speed @, as shown in Fig.3.

Figure 3

a- Determine the infinitesimal magnetic dipole moment of a thin circular ring of inner

radius r and width dr.
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b- Determine the magnetic dipole moment of the entire spinning disk.
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c- Determine, in terms of Q, @ and other given variables, the magnitude of the
infinitesimal magnetic field created by the thin circular ring considered in part (a) at a
distance x>>R>r.
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d- Determine the total magnetic field created at distance x>>R as a function of the
magnetic dipole moment.
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Problem 6 - Double loop (20 pts)

A large loop, containing a battery that
supplies a voltage Vo and a variable
resistor of resistance R, can be considered
as a circle of radius 7. A much smaller
loop of surface area A, containing an
uncharged capacitor of capacitance C and
a resistor of resistance Ry, is placed at the
center of the larger loop (Fig.4). You may
ignore the self-inductance in the small
loop. After being maintained at resistance
Ro at t<0, the variable resistance is
ramped up, starting at time t=0, from Ro
to R(t) = Ro (1 + at), with a>0.

a- Using Lenz's law, predict the direction of the induced current generated in the small
loop.
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b- Determine the direction and magnitude of the magnetic field created by the outer loop

at its center. .
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c- Calculate the emf induced in the small loop.

E__tiés
I\ 2 b
L. MJ“M Y WAL M
Cb&’ SQ-A vt Mk Sweolley Lo . :“(\mk\" . o Ukabyl e
R84k - & —>
A M(\)G -\ ] ‘AN\ ® L 3 (ttaty?
E» “d;r\"»- -Pv‘}f = -F\,\k (b ) T ze e db o ab
b )
k- »AM.\]a{;_Q_\-_ Ao
2‘20( L\;ok)l

Zf{or(\t—ak\

d- Establish the differential equation satisfied by the charge accumulated on the
capacitor's plates as a function of time.
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Problem 7 - Coaxial cable (20 pts)

The coaxial cable shown in Fig.5 is made
of two coaxial cylindrical conductors: an
inner solid cylinder of radius 2 and an
outer cylindrical shell of radius b (b > a)
and negligible thickness c (¢ << b). They
both carry the same amount of current I,
evenly distributed in the conductors, but
in opposite directions. You may assume
that both conductors are very long
compared to their radius (£ >> b).

Figure 5

a- Determine the direction and calculate the magnitude of the magnetic field created at
any radial distance r from the symmetry axis. For clarity regarding the direction, assume
that you look at the cable from the right-hand side of the figure (current coming toward you at
the center and away from you in the outside conductor).
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b- Based on the energy density stored in a magnetic field, determine the total energy
stored per unit length in the magnetic field created in the gap between the two coaxial

cylinders.
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c- Calculate the self-inductance per unit length of this coaxial cable.
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