UC Berkeley CS61C
Fall 2018 Midterm

Your Name (first last) SID

< Name of person on left (or aisle) Name of person on right (or aisle) —

TA name
Q1) Float, float on... (6 points)

Consider an 8-bit “minifloat” SEEEEEMM (1 sign bit, 5 exponent bits, 2 mantissa bits). All other properties of
IEEE754 apply (bias, denormalized numbers, «, NaNs, etc). The bias is -15.

a)

b)

How many NaNs do we have? 6
6, E is all 1s, MM is anything other than 0: {01, 10, 11} then double for sign bit
What is the bit representation (in hex) of the next minifloat bigger than the

minifloat represented by the hexadecimal value is 0x3F?
0x40, you don’t even have to do any math here, it's the next bit pattern up
c) What is the bit representation (in hex) of the encoding of -2.57

0x40

C1

Standard float calculation: -2.5 =-10.1 =-1.01 x 10" = 1 EEEEE 01, where EEEEE + -15 =1
so EEEEE = 16, so it's 1 10000 01 = C1

d) What does should_be_a_billion() return? (assume that we always round down to 0) 8.0
This is basically the value when you start counting by 2s, since once you start counting by 2s
and always round down, your sum doesn’t increase. There are 2 mantissa bits, so there are
always 4 numbers in the range [2, 2*"). So you ask yourself, what gap has exactly 4 numbers
between consecutive values of [2, 2*'), meaning when are you counting by 1? Easy, [4-8) = {4,
5, 6, 7}. When you get to 8 you’re counting by 2s since you have to cover 8 to 16 with only 4
numbers: {8, 10, 12, 14}. So it’s 8.0 and you didn’t have to do any work trying to encode
numbers in and out of minifloats, since that was what question ¢ was supposed to be about.

minifloat should_be_a_billion() {

minifloat sum = 0.0;
for (unsigned int i = ©; i < 1000000000; i++) { sum =
return(sum);

sum + 1.9; }

Q2) How can | bring you to the C of madness... (4 points)

On the quest, you saw mystery, which should really have been called is_power_of_2, since it took in an
unsigned integer and returned 1 when the input was a power of 2 and 0 when it was not. Well, it turns out we
can write that in one line! What should the blanks be so that it works correctly?

int is_power_of_2(unsigned int N) { return (N !=0) __ (N (N)); }
/* N is bitwise xor, ~ is bitwise not */ i ii iii div
i ii iii iv
O | Ol 0Os @z (O] O @ : O& |@- |Oe
O Il Ol Os @&l |O]l Ol Ca& O [O+ | @1
O O~ O~ O~ O~ O~ O~ O~ |O=* |O2

Q3) Cache money, dollar bills, y’all. (18 points)

We have a 32-bit machine, and a 4 KiB direct mapped cache with 256B blocks. We run the following code from
scratch, with the cache initially cold.

uint8_t addup() { void touch(uint8_t *A) {
uint8_t A[1024], sum = @; // 8-bit unsigned // Touch random location
touch(A); // in A between
for (int i = 9; i < 1024; i++) { sum += A[i]; } // A[@] to A[1623], inclusive
return(sum-1); A[random(9,1024)] = 0;
} }
a) Assume sum has the smallest possible value after the loop. What would addup return? 255

The smallest value is 0, when you subtract 1 you have “negative overflow” back to the biggest
representable number of an 8-bit unsigned value, which is 255.

b) LetA = 0x100061C0. What cache index is A[0]7? 1
We tried to design this cache so the numbers are easy. 256B blocks is 8 bits for the offset, or the last
two nibbles. 4KiB bytes in cache / 256B bytes/block = 16 blocks or 4 bits there, which is the 3rd nibble
from the right. So the index is 1.

c) LetA = @x100061C0. If the cache has a hit at 1=0 in the loop, what is the maximum
value returned by random? 63
If we look at the 8 bits of offset, the value if CO, which is 0b1100 0000, (¥4 of the way from the left since
the top two bits are 11) so any value of random between 0 and Ob11 1111 would leave us in that block

(before the 8 bit offset bubbles over, and another index is randomly touched), and 0b11 1111 is 63.

For d and e, assume we don’t know where A is.

d) What's the fewest misses caused by the loop? 3
For the fewest misses, let's assume A is block aligned. There are only 4 blocks ever used by the cache
in this case, and touch gives us one free hit, so that's 3 compulsory misses.

e) What's the most misses caused by the loop? 4
For the most misses, let's assume A is not block aligned. There are only 5 blocks ever used by the
cache in this case, and touch gives us one free hit, so that's 4 compulsory misses.

f) If we change to a fully associative LRU cache, how would c, d, e’s values change? (select 1 per box)

The array is well smaller than the array, nothing gets kicked out, so nothing would change

c:Oup (Odown @same d:Oup Odown @same e:Oup Odown @same
g) When evaluating your code’s performance, you find an AMAT of 4 cycles. Your L1 cache
hits in 2 cycles and it takes 100 cycles to go to main memory. What is the L1 hit rate? 98 %

AMAT = L1 Hit time + L1 Miss rate + L1 Miss penalty, and L1 hit rate = 1 - L1 miss rate
4=2+L1MR*100 = L1MR = 1/50 = 2%, so L1 hit rate = 98%
Q4) RISC-V business: I'm in a CS61C midterm & I’m being chased by Guido the killer pimp... (14 points)

a) Write a function in RISC-V code to return isNotInfinity: lui al, Ox7F800
0 if the input 32-bit float = =, else a xor a@, aod, al
non-zero value. The input and output will ret

be stored in a@, as usual.
(If you use 2 lines=3pts. 3 lines=2 pts)

(the rest of Q3 deals with done: 1i a@, 1

the code on the right) ret

Consider the following fun: beq a@, x0, done
RISC-V code run on a addi sp, sp, -12
32-bit machine: addi a@, a0, -1

sw ra, 8(sp)

sw a9, 4(sp)

sw s@, 0(sp)

jal fun

mv s@, a0

1w a9, 4(sp)

jal fun

add a@, a@, so

1w s@, o(sp)

1w ra, 8(sp)
beq a0, x0, done addi sp, sp, 12

rsl rs2 label ret

c) What is the hex value of the machine code for the underlined line? (choose ONE)

(OexFEO50EEA (OexFEO50EE3 @exFEO50CE3 (OexFE050FE3 (OexFEO50EFA OexFEO50FEA

beq --> look that up it's opcode 0b1100011 with funct3 of 0booo
The branch moves 2 spots up, so that's -2 instructions or -8 bytes
(8_10)=0...001000 --> (flip-bits of 8_10)=1...110111 (then add 1 for 2s comp)+ 1 --> 1...111000
...and in terms of bits it's 543210
...s0 bits 12]|1@:5 are all 1s and bits 4:1|11 are ©bl1100|0@bl --> ©bl11101
rsl (lookup in green sheet) for a@ is x10, which is 6b@1010, rs2 is Os
So putting all the bits in the right place above and clustering by nibbles we get OxFE©50CE3
imm[12]10:5] | rs2 | rsi | funct3d | imm[4:1]11] | opcode
11 1 1 1 1 1/ 0 © 0 0/ 0 1 0 1 0|0 © 0|1 1 © © 1|1 1 © © 0 1 1
31 30 29 28|27 26 25 24|23 22 21 20|19 18 17 16|15 14 13 12|11 10 09 08|07 06 05 04|03 02 01 00
F E 0 5 0 C E 3
d) What is the one-line C disassembly of fun with recursion, and generates the same # of function calls:
uint32_t fun(uint32_t a@) { return !a@ ? 1 : fun(a@-1) + fun(a®-1) }
e) What is the one-line C disassembly of fun that has no recursion (i.e., see if you can optimize it):
uint32_t fun(uint32_t a@) { return 1 << a0 }
f) Show the call and the return value for the largest possible value returned by (e) above:
fun(31) = 2731
Q5) What’s that smell? Oh, it’s potpourri! (18 points)
a) What's the ideal speedup of a program that’s 90% parallel run on an «-core machine? 10
1/s = 1/(1/10) = 10x
b) How many times faster is the machine in (a) than a 9-core machine in the ideal case? 2
1/[s + (1-s)/9] = 1/[1/10 + (9/10)/9] = 1/[1/10 + 1/10] = 1/[2/10] = 10/2 = 5 (so 2x faster)
c) What was NOT something companies were doing (yet) to reap PUE benefits? (select ALL that apply)
[] Do away with air conditioners
. Turn the servers completely off (not in an idle state) when not in use.

[] Elevate cold aisle temperatures
. Have a UPS (Uninterruptible Power Supply) for the building in case of a power outage
[] Pack the servers in freight containers to control air flow
d) What was NOT something Dave Patterson talked about in his Turing talk? (select ALL that apply)
. Dennard scaling is going strong
(] Machine learning researchers are pushing the boundaries of architecture
[] Some researchers have found that floating point has too much range, so they made their own floats
. VLIW (Very Long Instruction Word) architectures are an exciting new area of research
[] Quantum computers are at least a decade off from solving the global thirst for computation
e) The value of memory pointed to by x1 is 10. Two cores run the following code concurrently:

1w x2,0(x1) 1w x3,0(x1)
addi x2,x2,1 | add x3,x3,x3
sw x2,0(x1) sw x3,0(x1)

...what are possible values of the memory afterward? (select ALL that apply)

10 Wl 012 013 14 (15 (16 (17 (18 (119 20 21 22

f) The final machine code bits for beq are known after: (Ocompiler ~ @assembler ~ Olinker Oloader
This stage handles forward references: Ocompiler @assembler COlinker Oloader
This stage reads a DLL: Ocompiler Oassembler Olinker @loader

g) All 61C students were asked to record the time they spent learning C, and we wrote some Spark code
to calculate the AVERAGE time every student spent learning C. (select ONE per column)
>>> CRDD = sc.parallelize([("Ana", 10), ("Sue", 50), ("Ana", 20)])

>>> def C_init(L): return (L[O], ii)
>>> def C_sum(A, B): return (A[O] + B[O], A[1] + B[1])
>>> def C_avg(L): return [(L[O], L[1][0]/L[1][1])]
>>> CRDD.____ i (C_init).reduceByKey(C_sum). iii (C_avg).collect()
[("Ana", 15), ("Sue", 50)]
i) @map (OflatMap ii) O OL[1] iii) Omap @rlatMap
Oreduce OreduceByKey @L[1],1) O(L[e],L[1]) Oreduce OreduceByKey

h) Mark all necessary conditions to convert this code to SIMD for a =4x boost. (select ALL that apply)

void shift_vector(int *X, int n, int s) { for(int i=0; i < n; i++) X[i] += s; }

[] Loop needs to be unrolled [Ji++ should become i+=16 . It needs to use 128-bit registers

[] The CPU must have multiple cores . There needs to exist a tail case, for when n is not divisible by 4

[] x[i] += s needstochangeto x[i] = x[i] + s [i needs to be declared as an unsigned int
SIMD instructions need to be added

Remember, if you didn’t do as well as you’d hoped, remember that there’s always the final exam which will
allow you to clobber this midterm. (also note that if this exam was too hard, the eventual overall average of the
class will be lower, and we’ll ooch you all up, so you have that going for you, which is good)

1. Explain Newtons First Jakke Foob MoG. GRUG -
Law of Motion in your Pubbawup zink watfoom I 1OvE
OWIN wWords., GaZoRK . CTHUMBLE Spuzz. LOOPHOLES

7
oy

