
UC Berkeley – Computer Science
CS61BL: Data Structures
Final, Summer 2017

Optional. Mark along the line to show your feelings Before exam: [L____________________J].
 on the spectrum between L and J. After exam: [L____________________J].

This test has 11 questions worth a total of 60 points, and is to be completed in 170 minutes. The exam is closed book,
except that you are allowed to use three double-sided page of notes as a cheat sheet (front and back). No calculators or
other electronic devices are permitted. Give your answers and show your work in the space provided.

Write the statement out below in the blank provided and sign. You may do this before the exam begins. Any
plagiarism, no matter how minor, will result in points deducted from your exam.

“I have neither given nor received any assistance during the taking of this exam.”

I have neither given nor received any assistance during the taking of this exam.

 Signature: LaVar Ball

Write your name and student ID on the front page. Write the names of your neighbors. Write and sign the above
statement. Once the exam has started, write your class ID in the corner of every page.

Name: LaVar Ball Your Class ID: 495

SID: 9001 Name of person to left: Lonzo Ball

TA: LaVar Ball Name of person to right: LaMelo Ball

Tips:

• There may be partial credit for incomplete answers. Write as much of the solution as you can, but bear in mind that
we may deduct points if your answers are much more complicated than necessary.

• There are a lot of problems on this exam. Work through the ones with which you are comfortable first. Do not get
overly captivated by interesting design issues or complex corner cases you’re not sure about.

• Not all information provided in a problem may be useful.
• Unless otherwise stated, all given code on this exam should compile. All code has been compiled and executed before

printing, but in the unlikely event that we do happen to catch any bugs during the exam, we’ll announce a fix. Unless
we specifically give you the option, the correct answer is not ‘does not compile.’

• ○ indicates that only one circle should be filled in.
• □ indicates that more than one box may be filled in.
• For answers that involve filling in a ○ or □, please fill in the shape completely.
	
	
	
	
	
	

UC BERKELEY
Class ID: _____
	

2

1. Steven the Pusheen (4 pts)

a. List the keys that are in the ternary search trie below in the middle box. Then, draw the result of inserting
"HOT" into the ternary search trie. Mark the node that terminates the new key with a "T".

Original TST List of Keys insert(“HOT”)	

BRR
BURN
HAM

Common Errors: Listing “BURR” as a key. Left and right children are NOT equal. Inserting ‘o’ as the right
child of ‘h’ instead of ‘a’. Not terminating nodes with “T” → we need this in order to keep track of full words

b. Consider the binary min-heap below. Draw the corresponding heap after removeMin() has been called
once.

Original Binary Min-Heap removeMin()

UC BERKELEY
Class ID: _____	

3

c. Consider the weighted quick union object below. In the space provided, draw the result of calling
union(3,	4). Assume the object implements path compression.

Original WQU w/ path compression union(3,	4)

d. Consider the weighted quick union object below. In the space provided, draw the object after calling
find(4). Assume the object implements path compression.

Original WQU w/ path compression find(4)

UC BERKELEY
Class ID: _____
	

4

2. Changz (6 pts)

a. Consider the weighted undirected graph below. Write the order in which the vertices are visited using the
specified algorithm. In the event of a tie, visit the vertices in alphabetical order. The starting vertex for each
traversal is already written for you.

DFS: G E B D A C F

BFS: A D B C E F G

Dijkstra’s: A D B F C E G

Common errors: For DFS, neighbors are visited alphabetically. For example, C should be visited before F when
considering which neighbor to visit when at the D node.

b. For the same weighted undirected graph as in part a, draw the minimum spanning tree given by running
Kruskal’s algorithm. A blank graph has been provided below for your convenience. You need not include the
edge weights.

c. Suppose we wish to change the weights of the edges in the graph from part a. Is there an edge that will
always be in the minimum spanning tree regardless of what its weight changes to? If so, write down the edge. If
not, write none exists. No justification is necessary for either.

Yes, A-D will be in every MST of the graph.

UC BERKELEY
Class ID: _____	

5

d. Draw a directed graph that has only the following 3 topological sorts. Each vertex in your graph must be
“touched” by at least one edge. That is, every vertex in your graph must have at least one edge either arriving or
departing from it. There may be more than one answer. You only need to label your vertices with letters.

Topological Sort 1 Topological Sort 2 Topological Sort 3
J. Go to Soda
Y. Pair program
C. Ace the quiz
D. Pull code to repo
G. Find bugs in code
K. Pass the tests

J. Go to Soda
C. Ace the quiz
Y. Pair program
D. Pull code to repo
G. Find bugs in code
K. Pass the tests

J. Go to Soda
C. Ace the quiz
D. Pull code to repo
Y. Pair program
G. Find bugs in code
K. Pass the tests

Common errors:

• Not satisfying all topological sorts given
• Not having an edge from C-D (which allows for more topological sorts than given)
• Not drawing a directed acyclic graph

Chill-Out Corner

Remember to breathe. Don’t be afraid to chill with the Shadow below. He’s nice. Draw him something. Steven
suggests a Pusheen (reference on the left).

UC BERKELEY
Class ID: _____
	

6

3. Aunty Tares (4 pts)

You've just been hired by a hot new DNA sequencing startup called DAN'S DNA SHACK. Your job is to build
software that accepts full DNA sequences of length L and allows users to quickly check if certain DNA
subsequences of varying length are present in the full sequence. Fill in the DNAMatcher class below so that its
functionality matches its comments. The isSubsequence method should run in Θ(𝑅) time in the worst case
and Θ(1) time in the best case, where R is the length of the subsequence. There is no limit on the runtime of
DNAMatcher's constructor. You may assume full will never be null.

Hint: You may find the Trie class helpful. You may also find helpful the String class’ substring(int	
startIndex,	int	endIndex) method, which gets a String’s substring from startIndex (inclusive) to
endIndex (exclusive).

public	class	DNAMatcher	{	

				Trie	t;	

				/**	Constructs	a	DNAMatcher	object	for	a	DNA	sequence	full.	*/	

				public	DNAMatcher(String	full)	{	

								t	=	new	Trie();	

								for(int	i	=	0;	i	<	full.length();	i++)	{	

												t.insert(full.substring(i,	full.length()));	

								}	

				}	

	

				/**		
					*	Returns	true	if	sub	is	a	subsequence	of	the	DNA	sequence	
					*	given	by	full.	Returns	false	otherwise.		
					*/	
				public	boolean	isSubsequence(String	sub)	{	

								return	t.find(sub,	false);	

				}	

}	

	
Common errors:

• Only inserting full
• Off by one errors (substring’s endIndex is exclusive)
• Not calling find on the trie instance.

	
	
	

UC BERKELEY
Class ID: _____	

7

4. Green Eggs and Sam (4 pts)

Consider the following unsorted array, and the same array after 4 iterations of insertion sort as discussed in lab
and lecture (where we sweep through the array from left to right, and move an element to its relative correct
position by swapping). The first iteration starts at index 1 (the second element in the array). Assume no two
elements are equal. Insertion sort arranges the elements from least to greatest.

Unsorted:

After 4 iterations of insertion sort

For each row, fill in the correct bubble fully that corresponds to the relationship between the symbols. If there is
insufficient information to determine the relationship between two objects, fill in the ? bubble.

Symbol 1 < > ? Symbol 2

○ ○ ●

○ ● ○

● ○ ○

○ True / ● False: must be the smallest element in the array.

UC BERKELEY
Class ID: _____
	

8

5. Lights Off Zeitsoff (4 pts)

a. We have regular expressions in the leftmost column of the table below. For each string, fill in the circle if the
regular expression for that row fully matches that string.

For example, if the string char matches the regular expression (jar)*migon, shade the bottom left box. Fill in
the bubbles completely. If none of the strings match a given regular expression, leave that row blank.

 char charmigon jarmigon charm jar migon igon
charm	 ○ ○ ○ ● ○ ○ ○
charm+	 ○ ○ ○ ● ○ ○ ○

(char|jar)migon	 ○ ● ● ○ ○ ○ ○
[charm]*igon	 ○ ● ○ ○ ○ ● ●
(jar)*migon	 ○ ○ ● ○ ○ ● ○

For parts b. and c. write a regular expression that will fulfill the conditions below. Be sure to escape special
characters. The regular expressions are not Java Strings.

b. Match a valid group repo name, where a repo name is the string “group” followed by at least one digit.

Fully matched inputs: "group17",	"group200",	"group000",	"group0001"	
Non-matching inputs: "groups17",	"",	“17",	"group"	
	
Regex: group\d+	

c. Match a valid US phone number. Match only the two formats shown below.
 Hint: “\s” matches a single whitespace.

Fully matched inputs: "(650)	123-6402",	"408-244-1023"
Non-matching inputs: "1234567",	"",	"122-123",	"12-123",	"(65)	432-4596",		

"(65)-432-4596",	"	(6)	432-4596"	
	
Regex: (\(\d{3}\)\s|\d{3}-)\d{3}-\d{4}
	
	
	
	
	

	

UC BERKELEY
Class ID: _____	

9

6. Some-Ting Wrong (4 pts)	

For each of the methods below, bound the overall runtime of the method using Big-Theta notation in terms of
the input N. If not possible, write “N/A”. For full credit, your answer should be as simple as possible with no
unnecessary leading constants or lower order terms.

𝚯 𝑵𝟑 							private	static	void	f(int	N)	{	
																for	(int	i	=	0;	i	<	N;	i++)	{	
																				for	(int	j	=	0;	j	<	N;	j++)	{	
																								linear(N);	//	runs	in	linear	time	with	respect	to	input	
																				}	
																}	
												}	
	
N/A									private	static	void	g(int	N)	{	
																	if	(N	<	1)	return;	
																	for	(int	i	=	0;	i	<	N;	i++)	{	
																					g(100);	
																	}	
																	g(N/2);	
																	g(N/2);	
													}	
	
Intent of the question was for 𝚯(𝑵 𝒍𝒈 𝑵), but we messed up.
	
N/A						private	static	void	h(int	N)	{	
													Random	generator	=	new	Random();	
													for	(int	i	=	0;	i	<	N;	i++)	{	
																if(generator.nextBoolean())	{	//	returns	true	with	probability	.5	
																				break;	
																}	
													}	
									}	
	
	
𝚯(𝒍𝒈 𝑵 𝒍𝒈 𝒍𝒈 𝑵)	public	static	void	i(int	N)	{	
																			TreeSet<Integer>	t	=	new	TreeSet<>();	//	Uses	a	Red-Black	Tree	
																			for	(int	i	=	N;	i	>	0;	i	/=	2)	{	
																							t.add(i);	
																			}	
																}	
	
	
	
	
	
	

UC BERKELEY
Class ID: _____
	

10

	
	
7. A Supposedly Fun Ching I’ll Never Do Again (8 pts)

a. Which of the following types of graphs always have a topological sort?

■ Non-circular singly linked list
■ Binary search tree with no parent pointers
□ Undirected cyclic graph
■ Directed acyclic graph
□ Connected graph

b. For each of the following, indicate whether the statement is true or false. If true, provide a brief 1-2 sentence
justification. If false, provide a graph as a counterexample.

● True / ○ False: Suppose we run Dijkstra's algorithm on a graph G, starting from vertex v. If the only
negative edges in G are outgoing edges from v (and there are no negative cycles), then Dijkstra's will be able to
find the shortest-paths from v.

Dijkstra's just needs the guarantee that, as paths are expanded, the costs increase. If the only negative edges are
around the start vertex, then there is not chance for some path to decrease in cost further into the expansion.

○ True / ● False: Suppose we topologically sort some graph G. If vertex u is the first item in the sort, then for
some other vertex v in the sort, we know there is a path from u to v in G.

 Consider a graph with two source vertices. (Must specify source vertices)

○ True / ● False: Given a graph G with unique edge weights, the shortest paths from some start vertex s to all
other vertices are unique.

In the graph below, there are two shortest paths from s to c, s→a→c and s→b→c.

UC BERKELEY
Class ID: _____	

11

● True / ○ False: Suppose you want to run breadth-first search and Dijkstra’s algorithm on a graph G, whose
edge weights are all the same positive number. Assuming the two algorithms make the same tie-breaking
choices, the order in which nodes will be polled from the BFS queue is the same as the order in which nodes
will be polled from the priority queue of Dijkstra’s algorithm.

In the particular case where all the edge weights are length one, the shortest distance from a node to the start
node in Dijkstras corresponds to the number of edges between the node to the start node, which is the search
order for BFS. For larger edge weights, the numbers are simply scaled down to the length one case.

c. We are trying to find the minimum spanning tree (MST) of a graph where the edge weights may range
between 0 and 255. Christine suggests that it is possible to find the MST in a time faster than 𝑂(𝐸 lg |𝐸|). Is
this true? If so, briefly explain how can this be done. If not, briefly explain why.

True because we can use radix sort in order to sort the edges.

d. Steven needs to find the shortest path from his home to a Pusheen Conference. Let us define a graph G
where there are |V| vertices representing different locations, and |E| edges representing the distances between
locations. Steven's home is represented by the start vertex s, while the Pusheen Conference location is
represented by the target vertex t. Steven will need to make one stop for gas on his route from s to t. These gas
stations are represented by an array of vertices. For example, the array [𝑔!,𝑔!,… ,𝑔!] indicates that there are n
gas station locations.

Consider how one would write an algorithm that would find the shortest path from s to t such that at least one
gas station is on the path. Describe how your algorithm would work in 3-4 sentences. For full credit, your
algorithm should run in 𝑂(𝑉 + 𝐸 lg 𝑉 + 𝑛). We will give partial credit to algorithms that provide the
correct solution, but run in slower time. You must provide your algorithm’s runtime.

Run Dijkstra’s from s and then run Dijkstra’s from t. Afterwards, go through [𝑔!,𝑔!,… ,𝑔!]. For each 𝑔!, sum
the cost of the path from s to 𝑔! and the path from 𝑔! to t. Return the minimum path.

Runtime: 𝑂(𝑉 + 𝐸 lg 𝑉 + 𝑛).

0. PNH
	
What is the name of the simplest hydrocarbon with full icosahedral symmetry? The final reaction step to
synthesize this molecule is provided below.

Dodecahedrane

UC BERKELEY
Class ID: _____
	

12

8. JC and the Whale Pod (3 pts)

You are given a list of unsorted sublists containing Comparable elements. Using streams, complete the
method below to sort the unsorted sublists and combine them into one final list containing all the sorted
elements. If lst is empty, return an empty LinkedList.

public	class	StreamSort	{	
					
				/**		
					*	Merges	two	sorted	lists,	lst1	and	lst2,	into	one	sorted	list.		
					*	Returns	the	merged	list.	
					*/	
				public	static	<T	extends	Comparable<T>>	List<T>	merge(List<T>	lst1,		
																																																		List<T>	lst2)	{...}	
	
			/**	Returns	a	sorted	List	containing	all	the	elements	in	each	list	of	LSTS.	*/	
			public	static	<T	extends	Comparable<T>>	List<T>		
																		 	 	 streamSort(LinkedList<LinkedList<T>>	lsts)	{	

			return	lsts.stream().map(lst	->	

																								lst.stream().sorted().collect(Collectors.toList()))	

									.reduce(StreamSort::merge)	

									.orElse(new	LinkedList<T>());	

			}	

}	
	
	
Common Errors:

• Forgetting reduce is a terminal operation and calling collect after
• Calling orElse(null) after reduce instead of	orElse(new	LinkedList<T>()), or forgetting

orElse altogether!
• Calling methods after forEach. forEach is a terminal operation and returns void
• map takes in a lambda function of only one argument! Many tried to pass in two arguments

	
	
	
	

UC BERKELEY
Class ID: _____	

13

	

This page is left intentionally blank.

Gigi and Diana encourage you to continue.

UC BERKELEY
Class ID: _____
	

14

9. Big Baller Alex (6 pts)

Consider an undirected graph representing social relationships, where vertices represent people and edges
represent connections. Person A and Person B are considered to be in the same network if a path exists in the
graph from Person A’s vertex to Person B’s vertex. Implement the constructor and methods of the
SocialNetworks class, which models these social relationships. You may assume everything on the reference
sheet is imported.

A series of y isSameNetwork and x addConnection calls should run in Θ(𝑥 + 𝑦 ∙ 𝛼 𝑥 + 𝑦, 𝑥).
	
public	class	SocialNetworks	{	

				UnionFind	uf;	
				HashMap<String,	Integer>	nameToID;	
					
				/**		
					*	Initializes	a	social	graph	initialized	with	users.size()	people		
					*	whose	names	are	stored	in	users.	
					*/	
				public	SocialNetworks(Set<String>	users)	{	

								uf	=	new	UnionFind(users.size());	

								nameToID	=	new	HashMap<>();	

								int	ID	=	0;	

								for	(String	user	:	users)	{	

												nameToID.put(user,	ID);	

												ID++;	

								}	

				}	

	

UC BERKELEY
Class ID: _____	

15

...	(continued	on	next	page) Chirithy says to follow your dreams
		
			/**		
					*	Returns	true	if	the	users	with	names	n	and	o	are	valid	and	in	the	
					*	same	network.	Otherwise,	returns	false.		
					*/	
				public	boolean	isSameNetwork(String	n,	String	o)	{	
								if	(!nameToID.containsKey(n)	||	!nameToID.containsKey(o))	{	
												return	false;	
								}	
								return	uf.isConnected(nameToID.get(n),	nameToID.get(o));	
				}	
	
	
				/**		
					*	If	n	and	o	are	names	of	valid	users,	add	a	connection	between		
					*	them	if	such	a	connection	doesn't	exist	already.	
					*	Does	not	modify	the	SocialNetwork	if	n	or	o	are	not	valid	names.	
					*/	
				public	void	addConnection(String	n,	String	o)	{	

								if	(!nameToID.containsKey(n)	||	!nameToID.containsKey(o))	{	
												return;	
								}	
								uf.union(nameToID.get(n),	nameToID.get(o));	
				}	

				public	static	void	main(String[]	args)	{	
								Set<String>	users	=	new	HashSet<>();	
								users.add("Matt	Owen");	
								users.add("Alison	Tanubrata");	
								users.add("Wayne	Li");	
	
								SocialNetworks	mySpace	=	new	SocialNetworks(users);	
	
								mySpace.addConnection("Matt	Owen",	"Alison	Tanubrata");	
								System.out.println(mySpace.isSameNetwork("Matt	Owen",		
																										"Alison	Tanubrata"));	//	Should	print	true!	
								System.out.println(mySpace.isSameNetwork("Matt	Owen",		
																										"Wayne	Li"));	//	Should	print	false!	

UC BERKELEY
Class ID: _____
	

16

				}	
}	
	
Common errors:

• Only accounting for direct connections/not using the UnionFind structure
• Not giving unique ID for each new user
• Calling contains instead of containsKey in HashMap calls
• Forgetting to initialize HashMap in the constructor!

	
10. Matt Sit Down, Be Humble (7 pts)

A computational network is a way to graphically model a mathematical function. For instance, given the
function 𝑓 𝑥,𝑦, 𝑧 = 𝑥 + 2 ∗ 𝑦 + 𝑧 ∗ (𝑥 + 𝑧) , the corresponding computational network would look as
follows:

There are three kinds of nodes in a computational network: InputNodes, which represent variables and the
value they take on, MapperNodes, which take the output of one node and maps it to a different value through
its Function’s	apply method, and CombinerNodes, which can take an arbitrary number of inputs and
combine them together through its BinaryOperator’s	apply method. Complete the code on the following
pages such that the main method works as specified and your implementations match the behavior described in
the comments.

Hint: You will need to use streams.

import	java.util.Arrays;	
import	java.util.List;	
import	java.util.function.BinaryOperator;	
import	java.util.function.Function;	
	
public	class	CompNet	{	
				private	List<InputNode>	input;	
				private	Node	output;	
	
				private	interface	Node	{	
								public	double	visit();	

UC BERKELEY
Class ID: _____	

17

				}	
	
				/**	Sets	the	InputNodes	for	this	CompNet.	*/	
				public	void	setInputNodes(List<InputNode>	lst)	{	...	}	
				/**	Sets	the	output	Node	for	this	CompNet.	*/	
				public	void	setOutputNode(Node	node)	{	...	}		
	
...	(continued	on	next	page)	
				/**	Creates	the	CompNet	described	in	the	picture	on	the	previous	page.	*/	
				public	static	void	main(String[]	args)	{	
								CompNet	c	=	new	CompNet();	
								InputNode	x	=	new	InputNode(-2.0);	
								InputNode	y	=	new	InputNode(5.0);	
								InputNode	z	=	new	InputNode(-4.0);	
								MapperNode	times2	=	new	MapperNode(y,	(a)	->	a	*	2);	
								CombinerNode	add	=	new	CombinerNode(
																Arrays.asList(x,	times2,	z),	(a,	b)	->	a	+	b);	
								CombinerNode	secondAdd	=	new	CombinerNode(Arrays.asList(x,	z),	
																(a,	b)	->	a	+	b);	
								CombinerNode	mult	=	new	CombinerNode(Arrays.asList(add,	secondAdd),		
																(a,	b)	->	a	*	b);	
								c.setOutputNode(mult);	
								System.out.println(c.compute());	//	Should	print	out	-24.0	
				}	
	
				/**	Returns	the	computation	that	this	CompNet	represents.	*/	
				public	double	compute()	{	

								return	output.visit();	

				}	

	
				/**		
					*	A	Node	in	a	CompNet	that	represents	a	variable	and	the		
					*	value	it	takes	on.		
					*	Returns	its	value	upon	being	visited.	
					*/	
				private	static	class	InputNode	implements	Node	{	

								private	double	value;	
								public	InputNode(double	value)	{	...	}									

								public	double	visit()	{	
												return	value;	
								}	
				}	

Common errors:

UC BERKELEY
Class ID: _____
	

18

• Need to implement Node (not extend) and override the visit method.
• You cannot return anything when inside a class and not inside a method.

	

	

	

...	(continued	on	next	page)	
	
				/**		
					*	A	Node	in	a	CompNet	that	combines	the	result	of	its	inputs		
					*	through	its	BinaryOperator	upon	being	visited.	
					*	The	order	in	which	inputs	are	combined	does	not	matter.	
					*	If	input	is	length	1,	return	the	result	of	that	one	Node.	
					*	If	input	is	input	of	length	0,	return	0.0	
					*/	
				private	static	class	CombinerNode	implements	Node	{	

								List<?	extends	Node>	input;	
								BinaryOperator<Double>	combiner;	
								public	CombinerNode(List<?	extends	Node>	input,		
																												BinaryOperator<Double>	combiner)	{	...	}	

								public	double	visit()	{	
												return	input.stream().map(Node::visit).reduce(combiner).orElse(0.0);	
								}	
				}	

Common Errors:
• Forgetting a call to map, forgetting a call to reduce, forgetting to handle the Optional at the end of

the reduce call
• Accessing .value directly from the Node, not all Nodes have a value!
• Extraneous if cases that forced you to use more lines than necessary.
• Writing extends instead of implements
• Not overriding visit() (which has to be public and has to return a double)

				/**		
					*	A	Node	in	a	CompNet	that	maps	the	result	of	its	input	
					*	through	its	Function	upon	being	visited.	
					*/	
				private	static	class	MapperNode	implements	Node	{	

								private	Node	input;	
								private	Function<Double,	Double>	mapper;	
								public	MapperNode(Node	input,	Function<Double,	Double>	mapper)	{	...	}	

								public	double	visit()	{	
												return	mapper.apply(input.visit());	

UC BERKELEY
Class ID: _____	

19

								}	
				}	
}	

Common errors:

• extends Node instead of implements Node
• Did not call input.visit()
• Attempted to use streams incorrectly e.g. used input.toStream()

This is a Chim Chim.
11. Christine the Coding Machine (10 pts)

The k-nearest neighbors problem is defined as follows. Given a set of N points and a query Point q, output the
k points closest to q.

a. Complete the following method that finds the k-nearest neighbors by scanning through the input array, and
keeping track of the k nearest points. The outputted array should be ordered with the closest point at index 0 and
the farthest point at index k – 1. The code should run in Θ(𝑁 lg 𝑘) time in the worst case, where N is the length
of arr.

import	java.util.PriorityQueue;	

/**	Returns	the	distance	between	a	and	b.	*/	
private	static	int	dist(Point	a,	Point	b)	{	...	}	
	
public	static	Point[]	slowKNN(Point[]	arr,	Point	q,	int	k)	{	

				PriorityQueue<Point>	pq	=	new	PriorityQueue<>((a,b)	->		
																																		dist(q,	b)	-	dist(q,	a));	
				for	(Point	p	:	arr)	{	
								pq.add(p);	
								if	(pq.size()	>	k)	{	
												pq.poll();	
								}	
				}	
				Point[]	neighbors	=	new	Point[k];	
				for	(int	i	=	k	-	1;	i	>=	0	;	i--)	{	
								neighbors[i]	=	pq.poll();	
				}	
				return	neighbors;	
}	

Common errors:
• Creating a PriorityQueue with no Comparator
• Writing an Θ(𝑁 lg𝑁) solution (exam asks for a Θ 𝑁 lg 𝑘 solution)
• Having the reversed Comparator: (a,b)	->	dist(q,	a)	-	dist(q,	b)

UC BERKELEY
Class ID: _____
	

20

Splits on y-dimension. Points in
left subtree have y-coordinates less
than 6. Points in right subtree have
y-coordinates greater than 6.

	

	

	

	

	

b. You can complete this part without having done part a. A k-d tree is a data structure specialized for storing
points. It can be used to optimize the k-nearest neighbors query.

More specifically, a k-d tree is a binary tree, where each node in the tree contains a point of dimension k. Each
node stores the dimension it splits on (to determine how to divide the rest of the points). At each level of the
tree, we will cycle through the dimensions, splitting on a different dimension for each level.

For example, given the point set [(2, 3), (5, 4), (9, 6), (4, 7), (8, 1), (7, 2)], (2 dimensional points), the
corresponding k-d tree will look like below. First, we split on the x-dimension (which corresponds to dimension
0), then the y-dimension (which corresponds to dimension 1), and so forth.

Given an array of Points, we can recursively build up a balanced k-d tree with the following algorithm: At
each level of recursion, we will find the median of the Point array based on the dimension index. We will
create a new node containing that Point. Afterwards, we will recurse on all the Points before the median
point, splitting on the next dimension, setting the results to be the left child. We do the same for the points after
the median.

Complete the code below to construct a KDTree that stores the array of Points given by arr.

import	java.util.PriorityQueue;	
public	class	Point	{	...	}	
public	class	KDTree	{	
				private	TreeNode	root;	
				private	int	dim;	
	

Splits on x-dimension. Points in
left subtree have x-coordinates less
than 7. Points in right subtree have
x-coordinates greater than 7.

UC BERKELEY
Class ID: _____	

21

				private	class	TreeNode	{	
								Point	item;	
								TreeNode	left;	
								TreeNode	right;	
								int	depth;	
								private	TreeNode(Point	item,	int	depth,		
																									TreeNode	left,	TreeNode	right)	{...}	
				}	
		
...	(continued	on	next	page)	
				public	KDTree(Point[]	arr,	int	d)	{	
								dim	=	d;	
								root	=	buildTree(arr,	0);	
				}	
	
				/**		
					*	Returns	the	i-th	largest	Point	in	arr	based	on	the	dimIndex-th	dimension.		
					*	Partitions	and	modifies	arr	in-place	accordingly.		
					*	Points	less	than	the	i-th	largest	will	be	to	the	left	of	index	i.		
					*	Points	greater	than	the	i-th	largest	will	be	to	the	right	of	index	i.	
					*	dimIndex	must	be	between	0	and	dim	–	1.	
					*/	
				private	static	Point	partition(Point[]	arr,	int	i,	int	dimIndex)	{	...	}	
	
				/**	Recursively	builds	a	k-d	tree.	*/	
				public	TreeNode	buildTree(Point[]	arr,	int	depth)	{	

								if	(arr.length	==	0)	{	

												return	null;	

								}	else	{	

												Point	median	=	partition(arr,	arr.length	/	2,	depth	%	this.dim);	

												Point[]	before	=	new	Point[arr.length	/	2];	

												Point[]	after	=	new	Point[arr.length	-	arr.length	/	2	-	1];								

												for	(int	i	=	0; i	<	before.length; i++)	{	

																before[i]	=	arr[i];	

												}	

												for	(int	i	=	0; i	<	after.length; i++)	{	

															after[i]	=	arr[arr.length	/	2	+	i	+	1];	

												}	

UC BERKELEY
Class ID: _____
	

22

												TreeNode	left	=	buildTree(before,	depth	+	1);	

												TreeNode	right	=	buildTree(after,	depth	+	1);	

												return	new	TreeNode(median,depth,	left,	right)	;	

								}	
				}	
}	
	

c. You can complete this part without having done part b. To perform a k-nearest neighbors query, we will
search through the k-d tree in a manner similar to how you traversed your trie or TST in Autocomplete. 	

A TreeNode represents a bounding box in space (don’t worry too much about it). We will keep a fringe of
TreeNodes to visit, ordered by the distance from the query point to the bounding box that the TreeNode
represents, calculated through the dist method below. We will also keep a PriorityQueue to keep track of
the current nearest Points we have. In order to not have to explore the entire tree, we will only push
TreeNodes onto the fringe if we still have not put k Points in the PriorityQueue OR the distance from the
query point to the TreeNode is less than the distance from the query point to the kth farthest Point in the
PriorityQueue.

On the next page, complete the kNN method of the KDTree class below. The resulting array should be ordered
with the closest point at index 0 and the farthest point at index k – 1. Assume there will always be at least k
points in the k-d tree. Assume that all points in the KDTree have a unique distance from the query point.

Hint: Don’t forget null checks

import	java.util.PriorityQueue;	
public	class	Point	{	...	}	
public	class	KDTree	{	
				private	TreeNode	root;	
				private	int	dim;	
				...	
				/**	Returns	the	distance	between	q	and	the	bounding	box	represented	by	a.	*/	
				private	static	int	dist(Point	q,	TreeNode	a)	{	...	}	
				/**	Returns	the	distance	between	a	and	b.	*/	
				private	static	int	dist(Point	a,	Point	b)	{	...	}	
	
Common errors:

• Forgetting to add root to the fringe
• Adding TreeNodes to top, when it’s a PriorityQueue of Points
• Not null checking
• Adding extraneous TreeNodes to the fringe
• Comparing the TreeNode popped off from the fringe instead of its children (its children could be

closer)
• Iterating forwards to fill in the return array

UC BERKELEY
Class ID: _____	

23

	
	
	

...	(continued	on	next	page)	 	 	 	 	 	 Chao chao! 	
				public	Point[]	kNN(Point	q,	int	k)	{	
								PriorityQueue<TreeNode>	fringe	=	new	PriorityQueue<>((a,	b)	->		
																																														dist(q,	a)	-	dist(q,	b));	
								PriorityQueue<Point>	top	=	new	PriorityQueue<>((a,b)	->		
																																								dist(q,	b)	-	dist(q,	a));	

								fringe.add(root);	

								while	(!fringe.isEmpty())	{	

												TreeNode	node	=	fringe.poll();	

												Point	p	=	node.item;	

												top.add(p);	

												if	(top.size()	>	k)	{	

																top.poll();	

												}	

												int	closest	=	dist(q,	top.peek());	

												if	(node.left	!=	null	&&		

																					(pq.size()	<	k	||	dist(q,	node.left)	<	closest))	{	

																fringe.add(node.left);	

												}	

												if	(node.right	!=	null	&&		

																					(pq.size()	<	k	||	dist(q,	node.right)	<	closest))	{	

																fringe.add(node.right);	

												}	
								}		

UC BERKELEY
Class ID: _____
	

24

								Point[]	neighbors	=	new	Point[k];	

								for	(int	i	=	k	-	1;	i	>=	0;	i--)	{	

												neighbors[i]	=	pq.poll();	

								}	

								return	neighbors;	
				}	
}	 	 	 	 	 That’s it! Thank you for an awesome summer! J

