
UC Berkeley – Computer Science
CS61BL: Data Structures
Midterm 2, Summer 2017

Optional. Mark along the line to show your feelings Before exam: [L____________________J].
 on the spectrum between L and J. After exam: [L____________________J].

This test has 9 questions worth a total of 45 points, and is to be completed in 110 minutes. The exam is closed book,
except that you are allowed to use two double-sided page of notes as a cheat sheet (front and back). No calculators or
other electronic devices are permitted. Give your answers and show your work in the space provided.

Write the statement out below in the blank provided and sign. You may do this before the exam begins. Any
plagiarism, no matter how minor, will result in points deducted from your exam.

“I have neither given nor received any assistance during the taking of this exam.”

I have neither given nor received any assistance during the taking of this exam.

 Signature: Stannis Baratheon

Write your name and student ID on the front page. Write the names of your neighbors. Write and sign the above
statement. Once the exam has started, write your class ID in the corner of every page.

Name: Stannis Baratheon Your Class ID: 000

SID: 0000 Name of person to left: Arya Stark

TA: R’hllor Name of person to right: Davos Seaworth

Tips:

• There may be partial credit for incomplete answers. Write as much of the solution as you can, but bear in mind that
we may deduct points if your answers are much more complicated than necessary.

• There are a lot of problems on this exam. Work through the ones with which you are comfortable first. Do not get
overly captivated by interesting design issues or complex corner cases you’re not sure about.

• Not all information provided in a problem may be useful.
• Unless otherwise stated, all given code on this exam should compile. All code has been compiled and executed before

printing, but in the unlikely event that we do happen to catch any bugs during the exam, we’ll announce a fix. Unless
we specifically give you the option, the correct answer is not ‘does not compile.’

• ○ indicates that only one circle should be filled in.
• □ indicates that more than one box may be filled in.
• For answers that involve filling in a ○ or □, please fill in the shape completely.

UC BERKELEY
Class ID: _____
	

2

Reference Material
	
/**	Collections	*/	
All	Collections	implement	Iterable	and	have	size(),	isEmpty()	and	stream()	
methods.	
	
public	class	HashSet<T>	{	
				void	add(T	item);	
				boolean	contains(T	item);	
}	
	
public	class	TreeSet<T	extends	Comparable<T>>	{	
				void	add(T	item);	
				boolean	contains(T	item);	
}	
	
public	class	LinkedList<T>	implements	Queue<T>	{	
				void	addFirst(T	item);	
				void	addLast(T	item);	
				T	get(int	index);	
				T	removeFirst();	
				T	removeLast();	
}	
	
public	class	Stack<T>	{	
				void	push(T	item);	
				T	pop();	
}	
	
public	interface	Queue<T>	{	
				void	offer(T	e);	
				T	poll();	
				T	peek();	
}	
	
	
	
	
	
	
	
	
	
	
	
	
	

UC BERKELEY
Class ID: _____	

3

/**	Maps	*/	
	
public	class	HashMap<K,	V>	{	
				void	put(K	key,	V	value);	
				V	get(K	key);	
				boolean	containsKey(K	key);	
}	
	
public	class	TreeMap<K	extends	Comparable<K>,	V>	{	
				void	put(K	key,	V,	value);	
				V	get(K	key);	
				boolean	containsKey(K	key);	
}	
	
/**	Streams	*/	
	
public	interface	Stream<T>	{	
				Stream<T>	filter(Predicate<?	super	T>	predicate);	
				<R>	Stream<R>	map(Function<?	super	T,	?	extends	R>	mapper);	
				Optional<T>	reduce(BinaryOperator<T>	accumulator);	
				Stream<T>	sorted(Comparator<?	super	T>	comparator);	
				void	forEach(Consumer<?	super	T>	action);	
				<R,	A>	R	collect(Collector<?	super	T,	A,	R>	collector);	
}	
	
public	class	Collectors	{	
				static	<T>	Collector<T,	?,	List<T>>	toList();	
				static	<T>	Collector<T,	?,	Set<T>>	toSet();	
				static	<T,K>	Collector<T,	?,	Map<K,	List<T>>>		
								groupingBy(Function<?	super	T,	?	extends	K>	classifer);	
}	
	
public	class	Optional<T>	{	
				boolean	isPresent();	
				T	orElse(T	other);	
}	

UC BERKELEY
Class ID: _____
	

4

1. Stark: Winter is Coming (6 pts)
a. Draw the result of deleting 10 from the BST below using the standard deletion algorithm outlined in lab.

Original delete(10)	

Common errors:
• Pushing 12, 7 to the root instead of 11, 9 (getting incorrect inorder successor/predecessor) or pushing 6, 15

to root
• Tried to rotate tree instead of moving inorder successor/predecessor to root
• Violating bst invariants (i.e. placing larger nodes to the left or smaller nodes to the right)

b. Draw the splay tree below after find(7) has been called.

Original find(7)	

UC BERKELEY
Class ID: _____	

5

Common errors:
• Incorrect zig-zig (should zig parent with grandparent, then zig current with parent)
• Violating bst invariants (i.e. placing larger nodes to the left or smaller nodes to the right)
• Final tree didn’t have all elements from original tree (splaying only moves nodes, doesn’t delete anything)

c. Draw the result of inserting 20 into the following 2-3-4 tree using the insertion algorithm discussed in lab.
Afterwards, draw the red-black tree that corresponds to the resulting 2-3-4 tree. Clearly mark red nodes with
the letter R to the right of the number.

Original insert(20)	

Red-black tree that corresponds to the 2-3-4 tree
after insert(20)

Common Errors

There are multiple trees that correspond to the 2-3-4
Tree. Below is one of them

• Not satisfying invariants of red-black trees
(i.e. not having the same number black nodes
for every path from root to any leaf, not
having valid binary-search-trees, forgetting
elements, having red nodes with red
children)

• Marking 16 red

UC BERKELEY
Class ID: _____
	

6

2. Tully: Family, Duty, Honor (6 pts)
Consider the following “real-world” situations. For each situation, select the data structure that would be best
suited in terms of performance and ease-of use, taking into consideration the specific types of inputs listed in
each problem. Give a brief and succinct justification (2 lines or less) for why that data structure is best suited.
You may assume the LinkedList is a circular doubly-linked list with a sentinel node. Using Big-Theta
notation, give the worst-case runtime bound of using your data structure with respect to the variables defined in
each part. If there is more than one possible answer, choose only one data structure.

a. Kai has been tasked with scheduling autograder jobs in the order in which they arrive. He receives jobs one
by one from the Professor Pretentious and must be able to provide the next job to the autograder when one is
requested, removing that job from the pool of waiting jobs in the process. You may assume that there are never
more than N jobs waiting at once. Choose the best data structure to store the waiting jobs in.

○ Array ● LinkedList ○Red-Black Tree ○Splay Tree ○ HashSet

Justification:

The Professor Pretentious wants us to implement a Queue. We want a data structure that gives us first-in, first-
out order (FIFO). We can do this with a LinkedList by adding to the end and removing from the front of the list.
Because the LinkedList is doubly-linked with a sentinel, operations (addFirst and addLast) will run in constant
time.

Runtime (Schedule a job): 𝚯(𝟏) Runtime (Get next job to run): 𝚯(𝟏)

b. Sarah has become the CEO of MeTube and wants a way to store the number of visits that various websites
have. She wishes to construct a data structure that contains her websites and query this data structure for the top
K most-visited websites. At any given moment, she may receive a new website along with its number of visits,
thus forcing Sarah to update the data structure. Once a site is added, its number of visits cannot be updated.
Choose the best data structure to store the websites. You may assume there are never more than N websites
indexed at once and that query operations are much more common than add operations.

○ Array ● LinkedList ○Red-Black Tree ○Splay Tree ○ HashSet

Justification:

We can keep a sorted LinkedList. When we wish to add a website, we find the correct index to insert the new
website (which could possibly cause us to traverse the entire LinkedList). Once the index is found, inserting
into a LinkedList will take constant time. To find the top K websites, we can output the first K items in the
LinkedList.

Note: Asympotically, arrays will work in the same worst-case runtime. A single insert could cause us to have to
shift over all the items in the array. While adding a website to a Red-Black tree would be faster 𝚯(𝒍𝒈 𝑵) time, a
query would take 𝚯 𝒍𝒈 𝑵+𝑲 time in the worst case. Since queries are more common, we prefer a LinkedList
or an array.

Runtime (Add one website): 𝚯(𝑵) Runtime (Query): 𝚯(𝑲)

UC BERKELEY
Class ID: _____	

7

c. You are in charge of storing a set of N student names on PandaGrade. When a user logs into PandaGrade,
you must check that the user’s name is in the set of student names. A small set of PandaGrade users typically
make up the vast majority of login requests (since a few students use PandaGrade to submit a lot of regrade
requests). In addition to checking for membership of users’ names in the set of student names, we’d like to be
able to produce a sorted list of student names. Choose the best data structure to handle these operations.

○ Array ○ LinkedList ○Red-Black Tree ●Splay Tree ○ HashSet

Justification:

A Splay Tree is best for this task. Because only a few students use PandaGrade, we can utilize a Splay Tree’s
locality of reference. When we check those students, they will be splayed to the root, causing subsequent
retrievals to be quick. Because a Splay Tree is still a BST, we can easily get a sorted student list through an in-
order traversal.

Note: A Splay Tree is amortized 𝚯(𝒍𝒈 𝑵), but a single operation could still end up being 𝚯(𝑵) in the worst
case. This differs from a Red-Black Tree which is 𝚯(𝒍𝒈 𝑵) in the worst case. However, because of the nature of
our queries, a splay tree will end up being better in practice.

Runtime (Check that user is a student): 𝚯(𝑵) Runtime (Get sorted student list): 𝚯(𝑵)

d. Kevin wants to be more spontaneous. So, he decides to make sure that he never visits the same Restaurant
twice. Choose a data structure to store each new Restaurant that Kevin visits. At any time, Kevin must be
able to check if a given Restaurant has been visited. You can assume that Kevin will never visit more than N
Restaurants.

○ Array ○ LinkedList ○Red-Black Tree ○Splay Tree ● HashSet

Justification:

Assuming a relatively good hashCode, we can use a HashSet to store the restaurants, which will be on average
𝚯(𝟏) runtime for insertion and querying (though in the worst case, we could have to resize for an insertion).

Note: All Objects have a .hashCode() method, but not all are Comparable. If the worst case runtime for a
HashSet is unappealing, using a Red-Black Tree with a custom Comparator for Restaurants will give us
𝚯(𝒍𝒈 𝑵) runtime in the worst case for insertion and queries.

Common error: Stating that a HashSet can be checked for a restaurant or explaining the process to be used is not
sufficient because any data structure can accomplish this. Justification must provide reason that HashSets are
superior to other data structures here

Runtime (Insertion): 𝚯(𝑵) Runtime (Query): 𝚯(𝟏)

Chocobo says hi

UC BERKELEY
Class ID: _____
	

8

3. Arryn: As High As Honor (3 pts)
Consider the Widget class below. You may assume the HashSet class uses external chaining and the bucket-
indexing formula discussed in class. HashSet stores no duplicates. HashSet has a maximum load factor of
.75; it doubles in size when there are more than .75 items per bucket on average in the set.

public	class	Widget	{	
				Integer	doohickey;	
	
				public	Widget(Integer	doohickey)	{	
								this.doohickey	=	doohickey;	
				}	
	
				public	int	hashCode()	{	
								return	1;	
				}	
	
				public	boolean	equals(Object	o)	{	
								return	true;	
				}	
	
				public	static	void	hashParty(int	M)	{	
								HashSet<Widget>	pad	=	new	HashSet<>();	
								for	(int	i	=	0;	i	<	M;	i++)	{	
												pad.add(new	Widget(i));	
								}	
				}	
}	
	
a. Using Big-Theta notation, provide the worst-case runtime bound for hashParty in terms of its argument M.

Worst case: 𝚯(𝑴)

b. Now, suppose we replace Widget's	equals method above with the following:

public	boolean	equals(Object	o)	{	
				return	false;	
}	
	
Using Big-Theta notation, provide the new worst-case runtime bound for hashParty, again in terms of M. The
new runtime may be the same as before.

Worst case: 𝚯(𝑴𝟐)

UC BERKELEY
Class ID: _____	

9

I’ll be your
friend kupo

c. Finally, suppose we replace Widget's equals and hashCode methods as follows:

public	int	hashCode()	{	
				return	this.doohickey;	
}	
	
public	boolean	equals(Object	o)	{	
				return	false;	
}	

Using Big-Theta notation, provide the new worst-case runtime bound for hashParty, again in terms of M. The
new runtime may be the same as before.

Worst case: 𝚯(𝑴)

Designated Drawing Space

Maybe take a second to breathe and draw a Moogle for the Moogle below. He wants a friend.

UC BERKELEY
Class ID: _____
	

10

4. Tyrell: Growing Strong (4 pts)
Consider the Patriot class below:

public	class	Patriot	{	
				public	String	name;	
				public	int	intellect;	
				public	int	wisdom;	
				public	Patriot(String	name,	int	i,	int	w)	{	
								this.name	=	name;	this.intellect	=	i;	this.wisdom	=	w;	
				}	
				public	int	hashCode()	{	
								return	intellect;	
				}	
				public	boolean	equals(Object	o)	{	
								if	(o	instanceof	Patriot)	{	
												Patriot	other	=	(Patriot)	o;	
												return	intellect	==	other.intellect	
																&&	name.equals(other.name);	
								}	
								return	false;	
				}	
}	

You now execute the following lines of code:

Patriot	ham	=	new	Patriot("Hamilton",	32,	15);	
Patriot	burr	=	new	Patriot("Burr",	19,	10);	
Patriot	adams	=	new	Patriot("Adams",	24,	12);	
HashMap<Patriot,	Patriot>	enemyMap	=	new	HashMap<>();	
enemyMap.put(ham,	burr);	
enemyMap.put(burr,	ham);	
enemyMap.put(adams,	ham);	

Finally, you now consider the following four code snippets, each executed independently after the snippet
above. For each snippet, write what is printed. If the snippet produces a NullPointerException, write
NullPointerException and justify your answer. No justification is necessary if a
NullPointerException is not thrown. None of the following code snippets produce compiler errors, nor do
they produce runtime errors other than NullPointerException.

You may assume the HashMap class uses external chaining and the bucket-indexing formula discussed in class.
It stores no duplicates. HashMap initially has 16 buckets and a load factor of .75. The HashMap doubles in
size when there are more than .75 items per bucket on average in the table. You may assume HashMap's get
method returns null when the provided key argument is not in the map.

UC BERKELEY
Class ID: _____	

11

ham.intellect	=	33;	
System.out.println(enemyMap.get(burr).name);	

Print Output: Hamilton

Justification: N/A

Common error: Not realizing the difference between key and value. Get returns the value in the (key, value) pair for the
input key. Believing that any changes to the value causes a get operation to be null.

adams.intellect	=	26;	
System.out.println(enemyMap.get(adams).name);	

Print Output: NullPointerException

Justification: When the HashMap looks for Adams, it will look in bucket 10 (26 % 16). There is nothing in that
bucket and it will return null.

Common errors:

• Putting null instead of NullPointerException
• Putting “Adam’s hashcode changes to 10” is incorrect. The hashcode changes from 24 to 26. The bucket

index changes from 8 to 10.
• Adam itself is not “in” a bucket
• Changing adams.intellect to 26 also changes the intellect of the object that is a key in the HashMap. The

reason we can’t find adams after changing intellect is that the hashcode doesn’t map to the same bucket
prior to the change.

• Inserting into a HashMap does not insert a copy of the key and value.

ham.wisdom	=	8;	
System.out.println(enemyMap.get(ham).name);	

Print Output: Burr

Justification: N/A

Common error: Thinking that changing wisdom affects the hashcode

ham.intellect	=	16;	
System.out.println(enemyMap.get(ham).name);	

Print Output: Burr

Justification: N/A

UC BERKELEY
Class ID: _____
	

12

0. PNH (0 pts)
This author won the Nobel Prize in Literature for creating “an imagined world, where life and myth condense to
form a disconcerting picture of the human predicament today.”

Oe Kenzaburo won the Nobel Prize for Literature in 1994 for this. He is only the second Japanese author to ever
win the Nobel Prize in Literature. He was also a visiting scholar at Berkeley in 1983. Go read his stuff. Become
cultured in the world.

UC BERKELEY
Class ID: _____	

13

5. Baratheon: Ours is the Fury (5 pts)
For each of the methods below, bound the runtime of the method using Big-Theta notation in terms of the input
N. If not possible, write N/A. For full credit, your answer should be as simple as possible with no unnecessary
leading constants or lower order terms.

𝚯(𝒍𝒈 𝑵)			private	static	void	f(int	N)	{	
														if	(N	<	1)	{	
																		return;	
														}	
														f(N/2);	
										}	
	
𝚯(𝑵)						private	static	void	g(int	N)	{	
														if	(N	<	1)	{	
																		return;	
														}	
														g(N	-	1);	
										}	
	
𝚯 𝑵𝟐 					private	static	void	h(int	N)	{	
														if	(N	<	1)	{	
																		return;	
														}	
														h(N/2);	
														h(N/2);	
														h(N/2);	
														h(N/2);	
										}	
	
𝚯(𝑵𝟐𝒍𝒈 𝑵)	private	static	void	combined(int	N)	{	
														for	(int	i	=	1;	i	<	N;	i	*=	2)	{	
																		constant(N);	//	runs	in	constant	time	with	respect	to	input	
																		linear(N);	//	runs	in	linear	time	with	respect	to	input	
																		quadratic(N);	//	runs	in	quadratic	time	with	respect	to	input	
														}	
										}	
	
𝚯(𝒍𝒈𝟐𝑵)			private	static	void	challenge(int	N)	{	
														for	(int	i	=	1;	i	<	N;	i	*=	2)	{	
																		//	runs	in	logarithmic	time	with	respect	to	input	
																		logarithmic(i);		
														}	
										}	
	

UC BERKELEY
Class ID: _____
	

14

6. Lannister: Hear Me Roar (3 pts)
Consider the heavily redacted Commit class below. Commit objects contain a nameToSHA HashMap.	
nameToSHA contains a mapping of the names of the files tracked by this Commit to the hashes of the blob
backups corresponding to those files. You may not assume anything about Commit's instance variables or
methods other than that which is provided below. Fill in the isFilePresent method so that the method
behaves according to its comment. You may assume the Utils class is available to the Commit class (via
import or otherwise).

public	class	Commit	{	
				...	
				/**		
					*	A	map	of	filename	strings	to	the	SHA-1	strings	of	those	files’	
					*	contents.		
					*/	
				public	HashMap<String,	String>	nameToSHA;	
					
				/**		
					*	Returns	true	if		
					*	a)	given	filename	is	tracked	by	this	commit	and	
					*	b)	given	contents	matches	the	contents	of	this	commit's	blob	for	filename	
					*	with	high	probability.	
					*	Otherwise,	returns	false.		
					*/	
				public	boolean	isFilePresent(String	filename,	byte[]	contents)	{	

								if	(nameToSHA.containsKey(filename))	{	

												String	sha1	=	Utils.sha1(contents);	

												return	sha1.equals(nameToSHA.get(filename));	

								}	

								return	false;	

				}	
}	
	
public	class	Utils	{	
				...	
				/**	Returns	the	SHA-1	hash	of	a	byte	array.	*/	
				public	static	String	sha1(byte[]	content)	{	...	}	
}	

Common Errors:

• Minor errors (contains instead of containsKey, == to check String equality instead of .equals)
• Forgetting to check that fileName exists in nameToSHA
• Trying to assign a String to a byte[] z

UC BERKELEY
Class ID: _____	

15

7. Greyjoy: We Do Not Sow (6 pts)
A NestedList is a list that contains either a char, or a List of NestedLists. Given a NestedList,
complete the DeepIterator, an iterator that returns each char in the NestedList in order (essentially
flattening the NestedList).

For example, given the NestedList: [([e],	[([x],	[o])])], a series of next() calls should return e,	
x,	o. () denotes a List and [] denotes a NestedList. A NestedList can be arbitrarily deep (i.e. you
could have to go through many lists before you get to a char). You may assume that the user of the iterator will
always call hasNext() before next().

import	java.util.List;	
import	java.util.Stack;	
	
public	interface	NestedList	{	
		
						/**		
							*	Returns	true	if	this	NestedList	holds	a	single	char,		
							*	false	if	it	contains	a	list	of	NestedLists.		
							*/	
						public	boolean	isChar();	
		
						/**		
							*	Returns	the	single	char	that	this	NestedList	holds,		
							*	if	it	holds	a	single	char,	otherwise	returns	null.		
							*/	
						public	Character	getChar();	
		
						/**		
							*	Returns	the	List	of	NestedLists	that	this	NestedList	holds,		
							*	if	it	holds	a	List.	Otherwise,	returns	null.	
							*/	
						public	List<NestedList>	getList();	
}	
	
public	class	DeepIterator	implements	Iterator<Character>	{	
	
				Stack<NestedList>	stack	=	new	Stack<>();	
	
				public	DeepIterator(NestedList	list)	{	

								stack.push(list);	

				}	
	
	
	
...	(continued	on	next	page)	

UC BERKELEY
Class ID: _____
	

16

				@Override	
				public	boolean	hasNext()	{	

									return	!stack.isEmpty();	

				}	

	
				@Override	
				public	Character	next()	{	
								while(!stack.isEmpty())	{	

												NestedList	curr	=	stack.pop();	

												if(curr.isChar())	{	

																return	curr.getChar();	

												}	

												List<NestedList>	lst	=	curr.getList();	

												for(int	i	=	lst.size()	-	1;	i	>=	0;	i--)	{	

																stack.push(lst.get(i));	

												}	

								}	
								return	null;	
				}	
}	

Common errors:

• In hasNext(), calling on stack peek() causes an EmptyStackException, it doesn’t return null.
• The boolean result in hasNext() must be returned.

• Additionally need to check stack.isEmpty() is false, so need a !.
• curr.getList() has return type List<NestedList>. Either the generic must be included here or a cast used

later when pushing to the stack.
• No recursive call to next() is needed. The stack data structure allows us to have the “recursive” nature

we want without making a recursive call.
• Must iterate over items backwards in for loop so that they are added to the stack in the correct order.
• Stacks only have a no-args constructor.

UC BERKELEY
Class ID: _____	

17

8. Martell: Unbowed, Unbent, Unbroken (6 pts)
a. You are given a list of Users as defined below. Using streams, complete the methods such that they work as
specified by their comments. Each method requires only a single statement (one semicolon only).

public	class	User	{	
				...	
				public	User(int	age,	String	name)	{	...	}	
				public	List<User>	getFriends()	{	...	}	
				public	int	getAge()	{	...	}	
				public	String	getName()	{	...	}	
	
				/**	Returns	a	List	of	the	names	of	Users	with	age	>	18.	*/	
				public	static	List<String>	olderThan18(List<User>	lst)	{	
								return	l.stream()	
																.filter(x	->	x.getAge()	>	18)	
																.map(User::getName)	
																.collect(Collectors.toList());					
				}	
	
				/**	Returns	a	list	of	Users	ordered	from	least	to	most	friends.	*/	
				public	static	List<User>	orderedByPopularity(List<User>	lst)	{	
								return	l.stream()	
																.sorted((x,	y)	->	x.getFriends().size()	-	y.getFriends().size())	
																.collect(Collectors.toList());	
				}	
}	
	
Common errors:

• Modifying the stream before calling .sorted() in a way that cannot lead to a stream of sorted Users does
not get credit for .sorted()

• Comparators must return an integer - returning a boolean is not valid comparator
• Calling .compareTo on an int, usually after a.getFriends().size(), is not valid syntax

	

b. Write a method, functionReducer, which takes in a List of Functions and returns a single Function
that is the composition of all the Functions in the list. For example, if the list contained f(x), g(x), and h(x),
FunctionReducer should return a function that would give the results of f(g(h(x))). If the input list is empty,
FunctionReducer should return null. This method requires only a single statement (one semicolon only).

Recall that a Function<T,	R> takes in an argument of type T and returns an argument of type R. It is a
functional interface that has a single apply method. Lambda statements and method references can be used in
place of Functions.

UC BERKELEY
Class ID: _____
	

18

public	static	<T>	Function<T,	T>	functionReducer(List<Function<T,	T>>	lst)	{	
				return	l.stream()	
																.reduce((f,	g)	->		
																										(x)	->	f.appy(g.apply(x))).orElse(null);							
}

Common errors:

• Reduce needs to take in a lambda that takes in two Functions and returns another Function
• You cannot do something like (f, g) -> f.apply(g) in the reduce, the Function objects in lst take in objects

of type T and can only be applied on objects of type T, not other Functions
• If you have a Function f, to apply the Function on some input x, you must call f.apply(x), not f(x)
• You must call orElse after the reduce

UC BERKELEY
Class ID: _____	

19

This page is left intentionally blank.

Continue forward young traveler.

UC BERKELEY
Class ID: _____
	

20

9. Targaryen: Fire and Blood (6 pts)

A TrimTree is a binary tree that contains values of type T. When TrimTrees get too overgrown, they must be
trimmed. We will trim a TrimTree destructively around the edges in a bottom-up manner.

Trimming a node N means removing both of its children and replacing N’s item with the result of the
TrimTree’s combiner, called with N’s children’s items passed as arguments. It is only possible to trim a
node N if both of its children are leaves. To determine if a given node should be trimmed, a TrimTree has an
isBetter predicate which will test to see if the current item of N is better than the result of combiner. Notice
that when we trim a node N, it becomes a leaf and thus could make N’s parent available for trimming.

Complete the trim method on the next page, which does the work of recursively trimming the subtree rooted at
a node. You may not need all lines. Each line should contain only one statement.	
	
import	java.util.function.BiPredicate;	
import	java.util.function.BinaryOperator;	
	
public	class	TrimTree<T>	{	
					
				/**	Has	a	test(T	a,	T	b)	method	that	returns	true	if	a	is	better	than	b.	*/	
				BiPredicate<T,	T>	isBetter;	
					
				/**		
					*	Has	an	apply(T	x,	T	y)	method	that	returns	some	result	of	type	T.	
					*	Input	order	does	not	matter.	
					*/	
				BinaryOperator<T>	combiner;	
				TreeNode	root;	
	
				public	TrimTree(BiPredicate<T,	T>	isBetter,	BinaryOperator<T>	combiner)	{	
								this.isBetter	=	isBetter;	
								this.combiner	=	combiner;	
				}	
	
				private	class	TreeNode	{	
								T	item;	
								TreeNode	left;	
								TreeNode	right;	
	
								public	TreeNode(T	item,	TreeNode	left,	TreeNode	right)	{	...	}	
	
								public	TreeNode(T	item)	{	...	}	
				}	
	
	
	
...	(continued	on	next	page)	

UC BERKELEY
Class ID: _____	

21

				private	boolean	isLeaf(TreeNode	node)	{	
												return	node	!=	null	&&	node.left	==	null	&&	node.right	==	null;	
				}	
					
	
				public	void	trim()	{	
								trim(root);	
				}	
	
				private	void	trim(TreeNode	node)	{	

								if	(node	==	null)	{	

												return;	

								}	

								trim(node.left);	

								trim(node.right);	

								if	(isLeaf(node.left)	&&	isLeaf(node.right))	{	

												T	newValue	=	combiner.apply(node.left.item,	node.right.item);	

												if	(isBetter.test(newValue,	node.item))	{	

																node.item	=	newValue;	

																node.left	=	null;	

																node.right	=	null;	

												}	

								}	

				}	

}	
	
Common Errors:

• Trying to assign a variable to the result of the trim method (method is void)
• Reversing the arguments of isBetter(a, b), isBetter will return true if a is better than b, not if b is better

than a
• Switching if statement checks (isLeaf and isBetter), need to call isLeaf before doing any changes

because we can only trim if we are dealing with the children
• Calling combiner before checking that both children exist, could lead to null pointers
• Base case must include a check for the node == null before looking at node fields, cannot use isLeaf

because it will not do the correct check
	

