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EECS 16A Designing Information Devices and Systems I
Fall 2018 Midterm 1

Midterm 1 Solution

PRINT your student ID:

PRINT AND SIGN your name: ,
(last name) (first name) (signature)

PRINT your discussion section and GSI(s) (the one you attend):

Name and SID of the person to your left:

Name and SID of the person to your right:

Name and SID of the person in front of you:

Name and SID of the person behind you:

1. What is one of your hobbies? (2 Points)

2. Tell us about something that makes you happy. (2 Points)

Do not turn this page until the proctor tells you to do so. You may work on the questions above.
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PRINT your name and student ID:

3. Pizza and Pirates! (18 points)
You are stuck on a deserted island and you need to find food everyday! From science class, you know that
each day you need to eat:

Table 3.1: Daily doses
Food [grams] Daily dose

Fat 4g
Carbs 2g

Protein 14g
Vitamins 6g

Thankfully, you find a pirate camp on the the island and they have 4 kinds of food; eggs, pineapple pizza,
bananas, and carrots. Once again, you thank your science teacher, and remember that you know the compo-
sition of each of these foods:

Table 3.2: Food composition
Food [grams] 1 egg 1 slice of pineapple pizza 1 banana 1 carrot

Fat 1g 2g 0g 0g
Carbs 0g 2g 1g 0g

Protein 3g 3g 1g 0g
Vitamins 1g 0g 1g 1g

In order to get enough food, you decide to steal some from the pirates. But, since it is so dangerous to steal
food, you want to take exactly what you need, no more no less. Each day, you must decide how how much
food to steal; number of eggs, xe, number of pineapple pizza slices, xp, number of bananas, xb, and number
of carrots, xc.

(a) (2 points) How many unknowns are there in this problem?
Solution: There are 4 unknowns. Each day, you must decide how how much food to steal; number
of eggs, xe, number of pineapple pizza slices, xp, number of bananas, xb, and the number of carrots, xc.

(b) (6 points) Using Tables 3.1 and 3.2, write the equation for your daily dose of food groups in the form
A~x =~y where~x = [xe,xp,xb,xc]

T . Clearly define A and~y in your solution.
Solution: The four unknowns that we want to solve for are number of eggs, xe, number of pineapple
pizza slices, xp, number of bananas, xb, and the number of carrots, xc. Each day, we want the amount
of food we eat to be exactly equal to the daily doses in Table 3.1. We will let ~y be our daily dose of
each food group. To satisfy our daily needs, we need:

~y =


4
2
14
6

 (1)

We want A to map from ~x to ~y, or from the number of individual foods to grams of each food group.
We can construct A from Table 3.2.
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A =


1 2 0 0
0 2 1 0
3 3 1 0
1 0 1 1

 (2)

Now writing this in the form A~x =~y:
1 2 0 0
0 2 1 0
3 3 1 0
1 0 1 1




xe

xp

xb
xc

=


4
2
14
6

 (3)

(c) (10 points) Now let A and~y be:

A =


1 2 0 0
0 2 0 0
2 4 1 1
0 0 1 1

 , and~y =


4
2
14
6

 , (4)

where~y is the daily dose of each food group needed.
Using the values from Equation (4), find the solution or the set of solutions for how much of each type
of food you need to steal everyday, i.e. solve for~x in A~x =~y.
Solution: First, we will construct our augmented matrix using A and~y.


1 2 0 0 4
0 2 0 0 2
2 4 1 1 14
0 0 1 1 6


We can use Gaussian elimination on our augmented matrix:


1 2 0 0 4
0 2 0 0 2
2 4 1 1 14
0 0 1 1 6


R3−2R1→ R3︷︸︸︷⇒


1 2 0 0 4
0 2 0 0 2
0 0 1 1 6
0 0 1 1 6


R4−R3→ R4︷︸︸︷⇒


1 2 0 0 4
0 2 0 0 2
0 0 1 1 6
0 0 0 0 0


After Gaussian elimination, our augmented matrix has a row of zeros at the bottom. This tells us that
there are infinite solutions where xc is a free variable.
We must now parameterize the set of solutions. From the augmented matrix above, we can pull out the
following set of linear equations:

1xe +2xp = 4

2xp = 2

1xb +1xc = 6
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Let xb = m where m ∈ R. Solving this set of linear equations, we get

~x =


xe

xp

xb
xc

=


2
1
m

6−m


Any vector of this form is our set of possible solutions. Full credit will be given to any correct repre-
sentation. You also could have represented this in terms of the free variable xc.


2
1
6
0

+ xc


0
0
−1
1


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PRINT your name and student ID:

4. Trouble in Telecomm (24 points)

Fred (x0), Tina (x1), and Will (x2) each are sending messages (where each message x0, x1, x2 is a real number)
at the same time to Alec, Kristin, and Colin respectively.

To achieve this, the phone company will transmit ~y, which is a vector of linear combinations of x0, x1, x2.
Specifically,

~y = V~x =

 | | |
~c0 ~c1 ~c2
| | |

x0
x1
x2

 . (5)

V is the encoding matrix.
On the receiver side, Alec, Kristin and Colin need to recover x0, x1, x2 respectively from~y. You are helping
the phone company evaluate different choices for the columns~c0,~c1 and~c2 of matrix V:

V0 =

 | | |
~c0 ~c1 ~c2
| | |

=

1 0 2
2 3 10
0 2 4


V1 =

 | | |
~c0 ~c1 ~c2
| | |

=

0 1 1
1 0 1
1 1 0

 (6)

(a) (8 points) You decide to characterize V0 in terms of its null space. Find a basis for the nullspace of V0.
Solution: Analyzing the first set of codes, we can find the null space by setting up the following
matrix equation:
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V0~x =~0 (7)1 0 2
2 3 10
0 2 4

a
b
c

=~0 (8)

−2R1+R2→R2︷︸︸︷⇒
1 0 2

0 3 6
0 2 4

a
b
c

=~0 (9)

R2/3→R2︷︸︸︷⇒
1 0 2

0 1 2
0 2 4

a
b
c

=~0 (10)

−2R2+R3→R3︷︸︸︷⇒
1 0 2

0 1 2
0 0 0

a
b
c

=~0 (11)

Now we identify c is a free variable and express the other variables in terms of it.

b =−2c (12)

a =−2c (13)

Finally we construct the null space,

N(V0) = span


−2
−2
1

 (14)

(b) (8 points) If the matrix V0 =

1 0 2
2 3 10
0 2 4

 is invertible, find its inverse. If it is not invertible, why not?

Given this, is V0 a good encoding matrix to use? Justify your answer.
Solution: The matrix V0 is non-invertible. This is because the columns are not linearly independent
(twice the second plus the first is the third). This can also be identified from the null space. The
null space of the matrix contains more than just the zero vector. This implies there will be an infinite
number of solutions and that Alec, Kristin, and Colin will not be able to uniquely decode the sent
messages. This makes V0 an unsuitable encoding matrix for the telecommunication company.

(c) (8 points) If the matrix V1 =

0 1 1
1 0 1
1 1 0

 is invertible, find its inverse. If it is not invertible, why not?

Given this, is V1 a good encoding matrix to use? Justify your answer.

Solution: The columns are linearly independent and therefore the matrix inverse exists. To find the
inverse, we start by writing the matrix equation:

V1V−1
1 = I (15)0 1 1

1 0 1
1 1 0

V−1
1 =

1 0 0
0 1 0
0 0 1

 (16)
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Then we setup the augmented matrix: [
V1 I

]
(17) 0 1 1 1 0 0

1 0 1 0 1 0
1 1 0 0 0 1

 (18)

R3→ R1
R1→ R2
R2→ R3︷︸︸︷⇒

 1 1 0 0 0 1
0 1 1 1 0 0
1 0 1 0 1 0

 (19)

R3−R1→ R3︷︸︸︷⇒
 1 1 0 0 0 1

0 1 1 1 0 0
0 −1 1 0 1 −1

 (20)

R2 +R3→ R3︷︸︸︷⇒
 1 1 0 0 0 1

0 1 1 1 0 0
0 0 2 1 1 −1

 (21)

1
2 R3→ R3︷︸︸︷⇒

 1 1 0 0 0 1
0 1 1 1 0 0
0 0 1 1

2
1
2

−1
2

 (22)

R2−R3→ R2︷︸︸︷⇒
 1 1 0 0 0 1

0 1 0 1
2

−1
2

1
2

0 0 1 1
2

1
2

−1
2

 (23)

R1−R2→ R1︷︸︸︷⇒
 1 0 0 −1

2
1
2

1
2

0 1 0 1
2

−1
2

1
2

0 0 1 1
2

1
2

−1
2

 (24)

Reading off the right half of the augemented matrix, we get:

V−1
1 =

1
2

−1 1 1
1 −1 1
1 1 −1

 (25)

Because the inverse exists, Alec, Kristin, and Colin will be able to uniquely decode their intended
signals, thus, V1 is a suitable encoding matrix for the telecommunication company.
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PRINT your name and student ID:

5. The Romulan Ruse (32 points) While scanning parts of the galaxy for alien civilization, the starship USS
Enterprise NC-1701D encounters a Romulan starship that is known for advanced cloaking devices.

(a) (6 points) The Romulan illusion technology causes a point (x0,y0) to transform or map to (u0,v0).
Similarly, (x1,y1) is mapped to (u1,v1). Figure 5.1 and Table 5.1 show two points on a Romulan ship
and the corresponding mapped points.

Figure 5.1: Figure for part (a)

Original Point Mapped Point
(x0,y0) = (500,500) (u0,v0) = (500,1500)

Original Point Mapped Point
(x1,y1) = (1000,500) (u1,v1) = (1000,1500)

Table 5.1: Original and Mapped Points

Find a transformation matrix A0 such that[
u0
v0

]
= A0

[
x0
y0

]
, and

[
u1
v1

]
= A0

[
x1
y1

]
.

Solution: Let us assume A0 =

[
a b
c d

]
. Hence for point (x0,y0), we have:

[
500

1500

]
=

[
a b
c d

][
500
500

]
=⇒

[
1
3

]
=

[
a b
c d

][
1
1

]

i.e.
a+b = 1; (26)

c+d = 3. (27)

Similarly, for point (x1,y1), we have[
1000
1500

]
=

[
a b
c d

][
1000
500

]
=⇒

[
2
3

]
=

[
a b
c d

][
2
1

]
i.e.

2a+b = 1; (28)

2c+d = 3. (29)
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Solving Equations (26) and (28) for a and b, we have:

a = 1, and b = 0.

Solving Equations (27) and (29) for c and d, we have:

c = 0, and d = 3.

Substituting values of a, b, c, and d, we have

A0 =

[
a b
c d

]
=

[
1 0
0 3

]
.

Additionally, it can be observed from Figure 5.1 that the mapped vectors are derived by scaling the
original vectors by 3 in the y-direction and by unity in the x-direction. Using Figure 5.1 and Table 5.1,
we can write

u0 = x0, and v0 = 3y0, (30)

and
u1 = x1, and v1 = 3y1. (31)

Writing equations 30 and 31 in matrix-vector product form, we have[
u0
v0

]
=

[
1 0
0 3

][
x0
y0

]
;[

u1
v1

]
=

[
1 0
0 3

][
x1
y1

]
.

Hence

A0 =

[
1 0
0 3

]
. (32)

(b) (6 points) In this scenario, every point on the Romulan ship (xm,ym) is mapped to (um,vm), such that

vector
[

xm

ym

]
is rotated counterclockwise by 30° and then scaled by 2 in the x- and y-directions. This

transformation is shown in Figure 5.2.

Figure 5.2: Figure for part (b)

θ sinθ cosθ tanθ

0° 0 1 0
30° 1

2

√
3

2
1√
3

45° 1√
2

1√
2

1

60°
√

3
2

1
2

√
3

90° 1 0 ∞

Table 5.2: Trigononometric Table
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Find a transformation matrix R such that
[

um

vm

]
= R

[
xm

ym

]
.

Solution: Transformation matrix that rotates a vector counterclockwise by 30° is:

Rθ =

[
cos30° −sin30°
sin30° cos30°

]
=

[√
3

2 −1
2

1
2

√
3

2

]
.

Transformation matrix that rotates a vector counterclockwise by 30° and scales by 2 is:

R = 2Rθ =

[√
3 −1

1
√

3

]
.

Alternatively, the transformation matrix can be written as:

R =

[
2 0
0 2

][
cos30° −sin30°
sin30° cos30°

]
=

[√
3 −1

1
√

3

]
.

The Romulan ship has launched a probe into space and the Enterprise is trying to destroy the probe by firing
a photon torpedo along a straight line from point (0,0) towards the probe.

(c) (10 points) The Romulan generals found a clever way to hide the probe by transforming (mapping) its
position with a cloaking (transformation) matrix Ap:

Ap =

[
1 3
2 6

]
.

They positioned the probe at (xp,yp) so that it maps to

(up,vp) = (0,0), where
[

up

vp

]
= Ap

[
xp

yp

]
.

This scenario is shown in Figure 5.3. The initial posi-
tion of the torpedo is (0,0) and the torpedo cannot be
fired on its initial position! Impressive trick indeed!

Figure 5.3: Figure for part (c)
Find the possible positions of the probe (xp,yp) so that (up,vp) = (0,0).

Solution: We need to solve for [
1 3
2 6

][
xp

yp

]
=

[
0
0

]
So essentially we need to find the nullspace of the matrix Ap. Using Gaussian Elimination on the
augmented matrix, we have:[

1 3 0
2 6 0

]
⇒
[

1 3 0
1 3 0

]
⇒
[

1 3 0
0 0 0

]
⇒ xp +3yp = 0⇒ xp =−3yp.

The solution is α

[
−3
1

]
, where α is {α ∈ R}. So

[
xp

yp

]
should be in the span of

[
−3
1

]
.

Alternatively, any point (xp,yp) that is on the line: x =−3y, would represent all possible positions of
the probe.
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(d) (10 points) It turns out the Romulan engineers were not as smart the Enterprise engineers. Their calcu-
lations did not work out and they positioned the probe at (xq,yq) such that the cloaking (transformation)
matrix, Ap, mapped it to (uq,vq), where

[
uq

vq

]
= Ap

[
xq

yq

]
, and Ap =

[
1 3
2 6

]
.

As a result, the torpedo while traveling along a straight
line from (0,0) to (uq,vq), hit the probe at (xq,yq) on
the way!
The scenario is shown in Figure 5.4. For the torpedo

to hit the probe, we must have
[

uq

vq

]
= λ

[
xq

yq

]
, where

λ is a real number. Figure 5.4: Figure for part (d)
Find the possible positions of the probe (xq,yq) so that (uq,vq) = (λxq,λyq). Remember that the
torpedo cannot be fired on its initial position (0,0).

Solution: We need to solve for Ap

[
xq

yq

]
= λ

[
xq

yq

]
, i.e. we need to find the eigenvectors of Ap. Let’s

start by finding the eigenvalues:

det
{[

1 3
2 6

]
−
[

λ 0
0 λ

]}
= 0

det
{[

1−λ 3
2 6−λ

]}
= 0

So we have the characteristic polynomial:

(1−λ )(6−λ )− (3)(2) = 0

⇒ λ = 0,7

Using λ = 0, we have:
[

1 3
2 6

][
xq

yq

]
=

[
0
0

]
, which will map (xq,yq) to the original position of the

torpedo. The torpedo cannot be fired on its original position. So λ = 0 will not provide a valid
solution.
Using λ = 7, we have:

(Ap−7I)
[

xq

yq

]
=

[
0
0

]
⇒=

([
1 3
2 6

]
−7
[

1 0
0 1

])[
xq

yq

]
=

[
0
0

]
⇒
[
−6 3
2 −1

][
xq

yq

]
=

[
0
0

]
Using Gaussian Elimination on the augmented matrix form, we have[

−6 3 0
2 −1 0

]
⇒
[

2 −1 0
2 −1 0

]
⇒
[

2 −1 0
0 0 0

]
⇒ 2xq− yq = 0⇒ yq = 2xq

The solution is α

[
1
2

]
, where α is {α ∈ R : α 6= 0}. So

[
xq

yq

]
should be in the span of

[
1
2

]
.

Alternatively, any point (xq,yq) that is on the line: y= 2x, excluding (0,0), would represent all possible
positions of the probe.
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PRINT your name and student ID:

6. A Tropical Tale of Triumph: Does Pineapple Come Out on Top? (52 points)
(Based on a true story) During a discussion section, one of your TAs, Nick, makes the claim that pineapple
belongs on pizza. Another TA, Elena, strongly disagrees. Naturally, a war starts and students begin to flock
to the TA they agree with, switching discussion sections every week. Some students don’t have an opinion
and go to Lydia’s section since she is neutral in the matter. As a 16A student, you want to analyze this war
to see how it will play out.

(a) (6 points) You manage to capture the behavior of the students as a transition matrix, but want to
visualize it. You’ve written out the transition matrix M:

M =

 0.5 0 0
0.25 0.5 1
0.25 0.5 0


such that xElena[n+1]

xNick[n+1]
xLydia[n+1]

= M

xElena[n]
xNick[n]
xLydia[n]

 .
Each element of the state vector ~x[n] =

[
xElena[n] xNick[n] xLydia[n]

]T represents the number of stu-
dents attending that section at timestep n. Fill in values in the boxes in Figure 6.1 below such that
the diagram represents the transition matrix M.

Elena

Nick Lydia

�

� �
�

�
�

�

� �
Figure 6.1: Flow diagram for discussion sections
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Solution: Writing out the system of equations,

xElena[t +1] =
1
2

xElena[t]

xNick[t +1] =
1
4

xElena[t]+
1
2

xNick[t]+ xLydia[t]

xLydia[t +1] =
1
4

xElena[t]+
1
2

xNick[t]

It helps to write these out so you don’t accidentally use the transpose!
Filling in the diagram from above:

Elena

Nick Lydia

0.5

0.25 0.25

0

0.5

0.5

0

1
0

(b) (10 points) Your friend Vlad tells you that your transition matrix M was wrong, and gives you a new
transition matrix S, which has a steady state. In order to find who wins the war, you need to find how
many students end up in each section after everything has settled. Find a vector~x that represents a
steady state of S.

S =

0.2 0.5 0
0.5 0.5 0
0.3 0 1


Solution: To find the eigenvector corresponding to λ = 1, use the equation relating eigenvalues to
eigenvectors: S~x = λ~x and substitute in 1 for λ .

S~x = λ~x

=~x←− λ = 1

S~x−~x =~0

(S− I)~x =~0

EECS 16A, Fall 2018, Midterm 1 13



14

To find the eigenvector, we must solve for the vector ~x which satisfies the above equation. In other
words, we need to find Null(S− I).

S− I =

0.2 0.5 0
0.5 0.5 0
0.3 0 1

−
1 0 0

0 1 0
0 0 1


=

−0.8 0.5 0
0.5 −0.5 0
0.3 0 0


We do this using Gaussian elimination−0.8 0.5 0

0.5 −0.5 0
0.3 0 0

R1 +R3 7→ R1︷︸︸︷⇒
−0.5 0.5 0

0.5 −0.5 0
0.3 0 0


switch R1,R3︷︸︸︷⇒

 0.3 0 0
0.5 −0.5 0
−0.5 0.5 0


10
3 R1 7→ R1
2R2 7→ R2

R3 +R2 7→ R3︷︸︸︷⇒
1 0 0

1 −1 0
0 0 0


R2−R1 7→ R2︷︸︸︷⇒

1 0 0
0 −1 0
0 0 0


Rearranging the equations from our upper triangular matrix above, we get the following:

x1 = 0

−x2 = 0

Setting x3 as a free variable, we find

Null(S− I) = span


0

0
1


where the eigenvector ~x is any vector contained within this space. During the exam, the clarification
was added to ask for a nonzero vector. Any nonzero scalar multiple of

[
0 0 1

]T is a correct solution.

(c) (6 points) Your other friend Gireeja points out that the arguments are causing new people to join the
sections and others to leave entirely. In other words, the system is not conservative! The new system
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can be modeled with a state transition matrix A that has the following eigenvalue/eigenvector pairings:

λ1 = 1 : ~v1 =

1
0
0


λ2 =

1
2

: ~v2 =

0
1
0


λ3 = 2 : ~v3 =

1
1
1



You want the number of students in sections to stabilize. Which of the vectors below represent steady
states of the system, i.e. ~x such that A~x =~x? Fill in the circle(s) to the left of these vector(s).

©

5
0
0

 ©

0
0
1

 ©

513
513
0

 ©

 0
12
0



©

1
1
0

 ©

1026
0
0

 ©

1
2
3

 ©

 0
1026

0


Solution: The state~x can be written as a linear combination of the eigenvectors:

~x = c1~v1 + c2~v2 + c3~v3

Applying A to~x,

A~x = c1λ1~v1 + c2λ2~v2 + c3λ3~v3

~x = c1~v1 +
1
2

c2~v2 +2c3~v3←− A~x =~x

c1~v1 + c2~v2 + c3~v3 = c1~v1 +
1
2

c2~v2 +2c3~v3

Given the condition that we need a steady state and because~v1,~v2, and~v3 are linearly independent, we
know that

• c2 = c3 = 0
• c1 ≥ 0. If c1 = 0, this means there are no students to begin with, which makes for a very boring

(but extremely stable!) war. If c1 > 0, it just satisfies the eigenvalue equation Ac1~v1 = c1~v1.

Long story short, we’re looking for scaled versions of~v1 =

1
0
0

.
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⊗ 5
0
0

 ©

0
0
1

 ©

513
513
0

 ©

 0
12
0



©

1
1
0

 ⊗ 1026
0
0

 ©

1
2
3

 ©

 0
1026

0


(d) (6 Points) Assume we are still working with the same state transition matrix A as in part (c). Which

of the vectors below represent initial states such that the number of students in the sections keeps
growing? Fill in the circle(s) to the left of these vector(s).

©

5
0
0

 ©

0
0
1

 ©

513
513
0

 ©

 0
12
0



©

1
1
0

 ©

1026
0
0

 ©

1
2
3

 ©

 0
1026

0


Solution: Writing ~x = c1~v1 + c2~v2 + c3~v3, we want to see what situations down the line will never
lead to a steady state.

An~x = λ
n
1 c1~v1 +λ

n
2 c2~v2 +λ

n
3 c3~v3

= c1~v1 +
1
2n c2~v2 +2nc3~v3

After waiting an infinite amount of time, i.e. n→ ∞, the ~v1 component will stay steady; the ~v2 com-
ponent will go to zero; and the~v3 component will explode to infinity unless c3 = 0. Thus, in order for
things to explode, the following conditions must be true:

• c3 > 0
• c2 and c1 can be any nonnegative (including zero) value

In other words, we want vectors which have a nonzero~v3 =

1
1
1

 component. This causes the system

to never settle into a steady state, i.e. there will always be people being drawn into the flame war of
pineapples on pizza.

©

5
0
0

 ⊗ 0
0
1

 ©

513
513
0

 ©

 0
12
0



©

1
1
0

 ©

1026
0
0

 ⊗ 1
2
3

 ©

 0
1026

0


Note: Had there been an eigenvalue of -1 with an associated eigenvector~v4, applying A to~v4 repeatedly
would just lead to oscillation between the positive and negative vectors. This is another form of non-
convergence.
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(e) (6 points) Again assume we are still working with the same state transition matrix A as in part
(c). Which of the vectors below represent initial states such that everyone leaves the system, i.e.
limn→∞ An~x =~0? Fill in the circle(s) to the left of these vector(s).

©

5
0
0

 ©

0
0
1

 ©

513
513
0

 ©

 0
12
0



©

1
1
0

 ©

1026
0
0

 ©

1
2
3

 ©

 0
1026

0


Solution: Defining x and finding A~x:

~x = c1~v1 + c2~v2 + c3~v3

An~x = λ
n
1 c1~v1 +λ

n
2 c2~v2 +λ

n
3 c3~v3

After waiting an infinite amount of time, i.e. n→ ∞, the~v1 component will stay steady; the~v2 compo-
nent will go to zero; and the~v3 component will explode to infinity unless c3 = 0.

• c1 = 0 so there are no nonzero steady states.
• c3 = 0 so the system does not explode.
• c2 ≥ 0

We know that after a long time, any state that is a scaled form of~v2 associated with eigenvalue λ2 =
1
2

will approach~0, i.e. the number of people will keep halving until there are none left.

tl;dr, we’re looking for any scaled version of~v2 =

0
1
0

.

©

5
0
0

 ©

0
0
1

 ©

513
513
0

 ⊗  0
12
0



©

1
1
0

 ©

1026
0
0

 ©

1
2
3

 ⊗  0
1026

0


(f) (16 Points) Let us generalize the idea of convergence. Consider the following system:

~x[n+1] = T~x[n]

where~x is a vector with N elements and T is any N×N matrix unrelated to the previous parts. T has
N distinct eigenvalues λ1,λ2, . . . ,λN , and N associated eigenvectors~v1,~v2, . . . ,~vN such that T~vi = λi~vi

for 1 ≤ i ≤ N. Let |λ1| > 1. Prove that there exists at least one initial state ~x[0] for this system such
that it does not converge to a steady state.
Solution: We’ll generalize in terms of i, and then set i = 1. Let ~vi be a nonzero eigenvector
corresponding to the eigenvalue λi. We know that such a vector must exist because det(T−λiI) = 0.
Also, let~x[0] =~vi, and consider limn→∞ Tn~x[0].
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lim
n→∞

Tn~x[0] = lim
n→∞

Tn~vi

= lim
n→∞

λ
n
i ~vi

=
(

lim
n→∞

λ
n
i

)
~vi

However, since |λi| > 1, limn→∞ |λ n
i | → ∞. Thus, the system does not converge to a steady state, and

~vi (or any scalar multiple of it) is an initial state such that the system does not converge.
Common Mistakes

• Proofs which use diagonalization must prove that T is diagonalizable. In this case it is, since there
are N distinct eigenvalues with N respective associated eigenvectors, the N eigenvectors are all
linearly indpendent, implying the matrix is diagonalizable.

• Note that the problem states that |λ |> 1. Missing the case in which λ <−1 and only addressing
the scenario in which λ > 1 proves only that λ > 1 is a case for non-convergence and not the more
general case of |λ |> 1.

• Many students who used diagonalization asserted that if the first component of ~x[0] is nonzero,
then the system would not converge. The correct condition is if V−1~x[0] has a nonzero first
component.

• When choosing~x[0] = ∑ j α j~v j, it needs to be stated that α1 6= 0

(g) (2 points) Does pineapple belong on pizza? (Hint: Full points for honesty!)
Solution: Whether your answer is correct or not depends on if Elena or Nick graded your exam.
All answers were given full credit though!
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PRINT your name and student ID:

7. A Balancing Act! (46 points)

Your friend has started a San Francisco tour business using segways and she needs your help to find which
sensor to use for her segways.

We model the segway as a cart-pole system:

Cart

0p

F

Pole

θ

A cart-pole system can be fully described at any time step n by its position p[n], velocity ṗ[n], angle θ [n],
and angular velocity θ̇ [n]. We write this as a “state vector”:

~x[n] =


p[n]
ṗ[n]
θ [n]
θ̇ [n]


In this case, the cart-pole system can be represented by the following linear model:

~x[n+1] = A~x[n], (33)

where A ∈ R4×4.

Since no sensor can measure all four elements of the state vector, the following model can be used to
represent the measurements made by a certain sensor:

~y[n] = C~x[n], (34)

where C ∈ R2×4 expresses the measurement matrix of the sensor. Each sensor has an output: ~y[n] ∈ R2.

We have a few different sensors and we need to determine if the initial state~x[0] can be uniquely identified
using each sensor.

(a) (4 points) Express~y[0] in terms of~x[0].
Solution: From Equation (34), we get (by substituting n = 0):

~y[0] = C~x[0] (35)
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(b) (6 points) Express~x[1] and~y[1] in terms of~x[0].

Solution:
From Equation (33), we get (by substituting n = 0):

~x[1] = A~x[0] (36)

Using the result for~x[1] and applying Equation (34), we get the following:

~y[1] = CA~x[0] (37)

(c) (10 points) The first sensor measures p[n] and θ [n], and has the following measurement matrix:

C =

[
1 0 0 0
0 0 1 0

]
.

For this part, use the following matrix A:

A =


1 0.5 0 0
0 1 0 0
0 0 1 0.5
0 0 0 1

 .
Now:

• For any~x[0] we have~y[0] ∈ R2 and~y[1] ∈ R2.

• Stacking~y[0] and~y[1] on top of each other gives a 4×1 column vector:~z =
[
~y[0]
~y[1]

]
∈ R4.

• Expressing~y[0] and~y[1] in terms of~x[0], we can write a system of equations:

Q~x[0] =
[
~y[0]
~y[1]

]
=~z, (38)

where Q ∈ R4×4,~z ∈ R4 and~x[0] ∈ R4.

If your friend can recover ~x[0] from any given~z, calculate ~x[0] for ~y[0] =
[

5.0
0.1

]
, and ~y[1] =

[
6.0
0.2

]
. If

~x[0] cannot be recovered, explain why.
Solution:
Taking the expressions derived previously for ~y[0] and ~y[1], and using the given matrices C and A in
this part, we can express the system of equations using a single matrix:

Q =

[
C

CA

]
=


1 0 0 0
0 0 1 0
1 0.5 0 0
0 0 1 0.5


For your friend to recover ~x[0] from any given~z, we need that the solution to Equation 38 is unique.
For uniqueness, we can see the rows of Q are linearly independent, so that when we apply Gaussian
elimination, we will have four pivots. This means that we should have a unique solution, ~x[0], to
Equation 38 for a given~z.
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Thus we have shown that we can recover~x[0] for any given~z. We now perform Gaussian elimination
using the given value of~z on the following augmented matrix:

1 0 0 0 5.0
0 0 1 0 0.1
1 0.5 0 0 6.0
0 0 1 0.5 0.2


The first set of row operations we use is:

• 2(R3−R1)→ R3
• 2(R4−R2)→ R4 

1 0 0 0 5.0
0 0 1 0 0.1
0 1 0 0 2.0
0 0 0 1 0.2


Finally, we swap row 2 and row 3 to get an upper triangular matrix:

1 0 0 0 5.0
0 1 0 0 2.0
0 0 1 0 0.1
0 0 0 1 0.2


From this, we find the solution,

~x[0] =


5.0
2.0
0.1
0.2


(d) (10 points) The second sensor measures ṗ[n] and θ̇ [n], and has the following measurement matrix:

C =

[
0 1 0 0
0 0 0 1

]
.

For this part, use the following matrix A:

A =


1 0.5 0 0
0 1 0 0
0 0 1 0.5
0 0 0 1

 .
Again:

• For any~x[0] we have~y[0] ∈ R2 and~y[1] ∈ R2.

• Stacking~y[0] and~y[1] on top of each other gives a 4×1 column vector:~z =
[
~y[0]
~y[1]

]
∈ R4.

• Expressing~y[0] and~y[1] in terms of~x[0], we can write a system of equations:

Q~x[0] =
[
~y[0]
~y[1]

]
=~z, (39)

where Q ∈ R4×4,~z ∈ R4 and~x[0] ∈ R4.
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If your friend can recover ~x[0] from any given~z, calculate ~x[0] for ~y[0] =
[

2.0
0.2

]
, and ~y[1] =

[
2.0
0.2

]
. If

~x[0] cannot be recovered, explain why.

Solution:
Taking the expressions derived previously for ~y[0] and ~y[1], and using the given matrices C and A in
this part, we can express the system of equations using a single matrix:

Q =

[
C

CA

]
=


0 1 0 0
0 0 0 1
0 1 0 0
0 0 0 1


We use the same criteria as in part (c): we want to check if the solution to Equation 39 is unique.
We see that row 3 and row 4 are copies of row 1 and row 2, respectively. This means that Q has only
two linearly independent rows. When we perform Gaussian elimination, there will be only two pivots
- we need four pivots to determine~x[0] uniquely.
So we cannot recover~x[0] from any given~z.

(e) (16 points) The third sensor measures p[n] and θ̇ [n], and has the following measurement matrix:

C =

[
1 0 0 0
0 0 0 1

]
.

For this part, use the following matrix A:

A =


1 1 1 0
0 1 1 0
0 0 1 1
0 0 0 1

 .
Now:

• For n measurements, we have~y[0] ∈ R2,~y[1] ∈ R2, ... ,~y[n−1] ∈ R2.
• Stacking the measurements ~y[0], ~y[1],... , ~y[n− 1] on top of each other gives a 2n× 1 column

vector:

~z =


~y[0]
~y[1]
...

~y[n−1]

 ∈ R2n. (40)

• Expressing~y[0],~y[1], ... ,~y[n−1] in terms of~x[0], we can write the system of equations as:

Q~x[0] =~z, (41)

where Q ∈ R2n×4,~z ∈ R2n and~x[0] ∈ R4.

What is the minimum number of measurements needed to recover ~x[0] from ~z? Show the work to
justify your answer.

Solution: Similar to parts (c) and (d), to uniquely recover ~x[0] from~z, we need to ensure that the
solution to Equation 41 is unique.
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Our goal, then, is to pick the smallest value of n so that we have a unique solution~x[0] for any choice
of~z.
n = 1: In this case, we only measure~y[0] and have the following for Q:

Q =
[
C
]
=

[
1 0 0 0
0 0 0 1

]
We do not have enough information to find~x[0], as there are only two pivots in Q - we need four pivots
to uniquely identify~x[0].
n = 2: In this case, we measure~y[0] and~y[1], resulting in the following for Q:

Q =

[
C

CA

]
=


1 0 0 0
0 0 0 1
1 1 1 0
0 0 0 1


We see that row 2 and row 4 are identical. This implies that, after performing Gaussian elimination,
we will have only three pivots. Again, we need four pivots to uniquely identify~x[0].
n = 3: In this case, we measure~y[1],~y[1], and~y[2], resulting in the following for Q:

Q =

 C
CA
CA2

=



1 0 0 0
0 0 0 1
1 1 1 0
0 0 0 1
1 2 3 0
0 0 0 1


In this case, we can see that rows 1,2,3,5 are linearly independent. We have four linearly indepen-
dent rows, which suggests we have four pivots when doing Gaussian Elimination. So if a solution to
Equation 41 exists, it will be unique.
Therefore, the minimum number of measurements needed is 3.
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