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Midterm 1

1 True/False

3 points each.

(a) The MST of G is unique if and only if G has distinct edge weights.

Solution: False, e.g. consider when G is a tree where all edge weights are the same. Then G has only
one MST, which is all edges in G.

(b) The spanning tree of maximum weight in G is the minimum spanning tree in a copy of G with all
edge weights negated.

Solution: True. Minimum spanning algorithms only consider relative edge order so still work with
negative edge weights to produce a minimum spanning tree. The spanning tree T that minimizes
−w(T) maximizes w(T).

(c) Let G be a weighted undirected graph with positive edge weights where edge e has weight we for all
e ∈ E, and G′ be a copy G except that every edge e has weight w2

e . Any MST of G′ is an MST of G.

Solution: True. One way to see this is that the ordering of edges by weights remains the same, so the
set of MSTs that can be output by Kruskal’s is the same.

(d) In Huffman coding, assuming distinct frequencies, the character with the largest frequency has depth
(distance to root) less than or equal to the depth of every other character in the Huffman tree.

Solution: True. If not, you can swap it with the character that is closer to the root and the encoding
improves.

(e) If a satisfying assignment for a Horn formula exists, the greedy algorithm for Horn formulas finds the
satisfying assignment that sets the fewest variables to true among all satisfying assignments.

Solution: True. We know the algorithm only sets a variable to true only if it must be true in every
satisfying assignment.

(f) If a linear program has more than one optimal solution, then it has infinitely many.

Solution: True. Every point between two optimal solutions is also feasible and optimal.

(g) Recall that in a zero sum game, a player has a best defense strategy: a strategy that will achieve the
optimal expected payoff even if the opponent knows the strategy beforehand. It is always best to play
this strategy, even if you know ahead of time your opponent is playing some non-optimal strategy.

Solution: False. If you know your opponent is playing some non-optimal strategy, it may be possible
to do better than the expected payoff for your optimal strategy.

(h) If we multiply all capacities by a constant c, then the max-flow of the graph will by multiplied by c.

Solution: True, the min-cut of the graph will be c * the weight of the initial cut, as this transformation
affects all cuts equally. Therefore the max flow of the graph will be c * the value of the initial max
flow.
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(i) If all edge capacities in a max flow problem instance are distinct, the maximum flow is unique.

Solution: False. Say that there is one edge from the start vertex s to a vertex v with capacity 1. Then
all flows starting from v are bottlenecked by 1, so if there are multiple different paths to t with edges
that have capacity greater than 1, any of those paths can be chosen, even with different weights, with
the same maximum flow.

(j) Suppose the maximum (s, t)-flow of some graph has value f . Now we increase the capacity of every
edge by 1. Then the maximum (s, t)-flow in this modified graph will have value at most f + 1.

Solution: False. An example is two parallel s-t paths where all the edges in one path have capacity
2, and all the edges in the other path have capacity 1. The maximum flow is 3, originally, and then it
increases to 5, rather than 4 if one increases each edge capacity by 1.

2 Quick Fixes.

(a) Suppose you are given a MST T in a graph G. Consider further that a tree edge, e ∈ T, has its weight
increased. Give a linear time method to find an MST in the graph with new weights. You must justify
the correctness of your answer, but need not provide any runtime analysis. (6 points)

Solution: Removing edge e will break the tree into two components. Find the minimum weight edge
between those components, and add it to T − e to produce a new tree. The resulting set of edges is
a tree as there is no cycle and it has n− 1 edges and is minimum as we added the minimum weight
edge across a cut. The runtime is linear since one can use connected components to find the connected
subsets and one can find the minimum valued edge between the subsets with a scan over edges giving
an |E|+ |V| time algorithm.

(b) Consider a knapsack instance with n items where item i has weight wi and value vi. Suppose you
have a solution for the knapsack problem with repetition of weight W. Briefly describe as efficient
a method as possible to compute a solution with the addition of an (n + 1)th item with weight wn+1
and value vn+1. State your running time. No justification is needed.

(You may assume that you still have the table where K(w) for w ∈ [0, W] corresponds to the highest
value knapsack of weight w. To be clear, repetition is allowed.) (6 points)

Solution: We will compute a new table K′(w) which corresponds to the best knapsack with repetition
of all the items by K′(w) = max{K(w), K′(w− wn+1) + vn+1}. The runtime is O(W) since w ∈ [0, W]
and the maximum takes constant time.

3 A little bit of greed.

(a) Suppose you have an undirected graph G = (V, E), with average degree d (or equivalently |E| =
d|V|/2).

Assume d is even for simplicity. We want to find some V′ ⊆ V, such that each v ∈ V′ has at least d/2
neighbors in V′.

Consider the algorithm that begins with V′ = V, and repeatedly removes any vertex from V′ which
has strictly less than d/2 neighbors in V′ until no such vertices exist in V′.

1 This algorithm terminates with a non-empty set V′ where every vertex v ∈ V′ has at least d/2
neighbors in V′. (2 points)
Solution: True. See next part.
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2 If you answered True, provide a proof. If you answered False, give an example graph where the
algorithm removes all vertices. (6 points)
Solution: Let r be the number of vertices removed, the number of edges removed when remov-
ing vertex v. The total number of edges removed is at most rd/2.
If all vertices are removed we have r = |V|, the total number of edges removed is strictly less
than |V|d/2. The total number of edges is d/2|V|, so they all weren’t removed which contradicts
the assumption that all vertices were removed.

(b) In homework, you saw the following problem: You have G, with weights `(v) ≥ 0 and one proceeds
by marking vertices until all vertices are marked. Furthermore, when marking a vertex u the player
receives ∑v∈M(u) `(v) points where M(u) is the set of marked neighbors of u.

1 The number of points for the strategy of marking the vertices in decreasing order of `(v) is
∑e=(u,v)∈E . Fill in the blank (put your answer in the box). (2 points)
Solution: ∑e=(u,v) max{`(u), `(v)}. Since the order is to mark from largest to smallest, for each
edge one receives the larger point value of its endpoints.

2 Give a one line argument based on the previous part that this order is optimal. (2 points)
Solution: This order maximizes the expression in the sum over edges. That is, no order can get
more than max(`(u), `(v)) for any edge e = (u, v).

(c) Recall the greedy set cover algorithm which repeatedly adds the set with the most uncovered elements
to its solution until all elements are covered.

Suppose we run the greedy set cover algorithm on an instance where there are 9 elements in the union
of all the sets, and the optimal solution uses 3 sets to cover them. What is the largest possible number
of sets in the solution output by the greedy set cover algorithm? Note: You do not need to compute
or estimate any logarithms to answer this question. (3 points)

Solution: 5. Since the best solution uses 3 sets, in each iteration the greedy set cover algorithm adds
a set that includes at least a third of the remaining elements. So the maximum number of uncovered
elements after each iteration starts at 9 and then goes: b9 ∗ 2

3c = 6, b6 ∗ 2
3c = 4, b4 ∗ 2

3c = 2, b2 ∗ 2
3c =

1, b1 ∗ 2
3c = 0.

This is tight, e.g. consider an input with sets A = {1, 2, 3}, B = {4, 5, 6}, C = {7, 8, 9}, D = {1, 4, 7}, E =
{5, 8}. The optimal solution is A, B, C, but greedy might buy D, A, E, B, C in that order.

4 Now for dynamism.

(a) In the min weight knapsack problem without repetition, one is given n items where item i has weight
wi and value vi and one wishes to find the minimum weight set of items with value at least V. We
define a subproblem K(v, i) to be the minimum weight of any knapsack of value at least v using the
first i items.

1 Give the recurrence for K(v, i). (No justification needed) (4 points)
Solution: K(v, i) = min(K(v− vi, i− 1) + wi, K(v, i− 1)). An optimal knapsack either uses item
i or doesn’t, and then uses an optimal knapsack on the previous i − 1 items. The recurrence
follows.

2 What is the minimum space complexity of solving the recurrence above? (2 points)
Solution: V. To fill in the values of K(v, i) one only needs the values for K(v, i− 1) for V possible
values. Thus, one can compute the recurrence in Θ(|V|) space.
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5 Linear Programming.

(a) What is the optimal value of the linear program max x1 + x2, where x1 + 2x2 ≤ 3, and x1, x2 ≥ 0? (3
points)

Solution: 3. There are a number of ways to see that x1 = 3 and x2 = 0 is optimal here. Either check
the three vertices of the feasible region, or notice that x2 provides less value than x1.

(b) Suppose that you plot the feasible region from a linear program and get the following graph (the
shaded region is feasible). Assuming that your objective is min x+ 2y, what is the value of the optimal
solution? (3 points)

Solution:

Note that we only need to check the 4 vertices of the polytope for the value of the objective function.

x y Value = x + 2y
0 20 40

15 15 45
0 10 20
5 5 15

Clearly, the point 5, 5 is the smallest, and so is the optimal solution, with transportation cost equaling
$15.

(c) Consider a linear program with n variables and m inequalities (including non-negativity constraints)
where all variables are unrestricted.

1 A vertex of the linear program is a point where at least inequalities hold with equality. (2
points)
Solution: n. This is the definition of a vertex.

2 For two points which are neighboring vertices at least inequalities hold with equality at
both points. (2 points)
Solution: n− 1. This is the definition of neighboring vertices of a polytope.
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(d) Express the constraint |x| ≤ 4 as a set of linear inequalities. (Do not introduce new variables in your
solution.) (3 points)

Solution: x ≤ 4, x ≥ −4.

(e) We wish to find x, y ≥ 0 that minimizes |ax + by− 1|. Write a linear program for this problem. (4
points)

Solution: min z,
ax + by− 1 ≤ z.
ax + by− 1 ≥ −z.
x, y ≥ 0.

For each of the LPs in parts (f), (g), (h), decide if it is infeasible, unbounded, has a unique solution,
or has multiple solutions.

(f) Objective function: max x1 + 2x2; constraints: x1 + x2 ≥ 10; x1 ≤ 0 (2 points)

hinfeasible hunbounded hunique solution hmultiple solutions

Solution: Unbounded. Take x1 = 0 and x2 can be arbitrarily large.

(g) Objective function: max x1 + x2; constraints: x1 + x2 ≤ 3; x1, x2 ≥ 0 (2 points)

hinfeasible hunbounded hunique solution hmultiple solutions

Solution: Multiple solutions: (0, 3) and (3, 0) and all points on the line connecting them maximize
the objective function.

(h) Objective function: min 3x1 − 2x2; constraints: x1 + x2 ≤ 10; 2x1 + 2x2 ≥ 30 (2 points)

hinfeasible hunbounded hunique solution hmultiple solutions

Solution: Infeasible. The second equation is x1 + x2 ≥ 15, which contradicts the first equation that
x1 + x2 ≤ 10.

(i) Write the dual of the following LP: (4 points)

max 2x1 + 3x2

x1 + 4x2 ≤ 5
3x1 + 2x2 ≤ 4

x1, x2 ≥ 0

Solution:

min 5y1 + 4y2

y1 + 3y2 ≥ 2
4y1 + 2y2 ≥ 3

y1, y2 ≥ 0
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(j) Consider the zero sum game represented by the matrix, where each entry in the matrix corresponds
to the row player’s payoff. [

4 −3
−2 1

]
(1) What is the expected payoff if the column player plays (2/5, 3/5) and the row player picks the

best response to this strategy? (Recall that the row player is trying to maximize the payoff.) (2
points)
Solution: -1/5. The max of 4× (2/5) +−3× (3/5) and −2× (2/5) + 1× (3/5).

(2) What is the expected payoff if the row player plays (1/2, 1/2) and the column player plays the
best response to this strategy? (2 points)
Solution: -1. The min of 4× 1/2 +−2× 1/2 and −3× 1/2 + 1× 1/2.

(3) Is the expected payoff positive, negative, or zero when both players play optimally? (1 point)

hpositive hnegative hzero

Solution: Negative. The first solution shows that it must be negative.

6 In the flow.

For all parts of this problem, let G be a directed graph with source s and sink t, where all edge capacities
are 1.

(a) (True/False). Consider running the Ford-Fulkerson algorithm to find a max s-t flow in G. If G is a
DAG, then during the course of the algorithm, every edge capacity or residual reverse edge capacity
in the residual graph will be 0 or 1. (2 points)

(Ford-Fulkerson is the name of the algorithm which repeatedly finds an s-t path in the residual graph
and pushes as much flow as on possible on this path.)

Solution: True. So either the directed edge (u, v) has the original capacity or was saturated and the
reverse arc has the capacity 1 since each augmentation is of value 1.Note that if (u, v) is an edge, then
(v, u) is not an edge by the DAG assumption, so we do not have to account for (u, v) being saturated
and (v, u) being unsaturated.

Let δ(v, G) = indegree(v, G) − outdegree(v, G), where indegree(v, G) is the total capacity of edges
pointing to v in G, and outdegree(v, G) is the total capacity of edges pointing out of v in G. For
the following 3 parts your answer should be in terms of some subset of δ(v, G), indegree(v, G),
outdegree(v, G) (for any vertex v) and f .

(b) If one has routed f units of flow from s to t and the resulting residual graph is G′, what is δ(v, G′)
when v 6∈ s, t? (3 points)

Solution: δ(v, G). Since for any intermediate vertex, we have flow conservation, so any incoming
flow also leaves, so the new residual graph adds the same amount to both the in-degree and the
out-degree.
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(c) If one has routed f units of flow from s to t and the resulting residual graph is G′, what is δ(s, G′)? (3
points)

Solution: δ(s, G) + 2 f . The flow out of the source removes outdegree and adds indegree.

(d) If one has routed f units of flow from s to t and the resulting residual graph is G′, what is δ(t, G′)? (3
points)

Solution: δ(t, G)− 2 f . The flow into the sink removes indegree and adds outdegree.

7 Merging Piles

Given n sandpiles of weights w1, . . . , wn on a line, we want to merge all the sand piles together. At each
step we can only merge adjacent sand piles, with cost equal to the weight of the merged sandpile.

In particular, merging sandpiles i and i + 1 has cost wi + wi+1. Furthermore, one gets a single sandpile of
weight wi + wi+1 in its place which is now adjacent to sandpiles i− 1 and i + 2.

Note that different merging orders will result in different final costs, and we wish to find the order that
minimizes that cost.

(a) What’s the minimum cost of merging the four piles (100, 1, 1, 100)? (2 points)

Solution: 1+1+2+100+102+100 = 306

(b) You will give a dynamic programming algorithm for this problem. (12 points)

(1) Define your subproblems.
Solution: We define a subproblem f (i, j) to be the minimum possible cost of merging all the
piles from i to j.

(2) Describe and justify the recurrence for computing the solution to a subproblem.
Solution:

f (i, j) = min
i≤k<j

{ f (i, k) + f (k + 1, j)}+ wi + · · ·+ wj

for all i < j.
For any solution that merges the sandpiles from i to j must have a final merge which merges
piles from i to k and from k + 1 to j. Then those sub-intervals of sandpiles should be merged at
minimum cost which is defined recursively. The recurrence chooses the minimum cost solution
of this form.

(3) Describe the base cases or base subproblems.
Solution: The base case is f (i, i) = 0 and f (i, i + 1) = wi + wi+1.

(4) What is the time and space complexity of computing your solution?
Solution: Since there are at most n2 f (i, j)’s the space is O(n2). The runtime is O(n3) since the
recurrence for a subproblem takes the minimum over minimum over O(n) terms.

8 Setting up (Integer) Linear Programs.

Integer linear programming is very general in that we can formulate a lot of problems using it.
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A matching in a graph G = (V, E) is a subset of edges, M ⊆ E, where no vertex in V is incident to more
than one edge in M.

Formulate the problem of finding the maximum sized matching for an undirected graph G = (V, E) as an
integer linear program.

In addition to linear constraints, you may include constraining values of variables to come from a specific
set, e.g., the constraint x ∈ {0, 1, 2, 3, 4} indicates that x is an integer in [0, 4]. For each part below, you must
state what is asked both mathematically and in words. (Only the description of each part is needed, no
justification required) (8 points)

(1) Variables:

Solution: xe ∀e ∈ E. This variable takes on values 1 or 0, representing whether the corresponding
edge is in M or not respectively.

(2) Objective:

Solution: max ∑
e∈E

xe. Maximize the number of edges picked.

(3) Constraints:

Solution:

• xe ∈ {0, 1}: xe should be either 1 or 0 representing whether e is in M or not.

• ∑e=(u,v) xe ≤ 1 ∀v ∈ V. Represents the fact that at most one edge incident to v is in M.

9 Interval Covers.

Given an ordered set of points a1, . . . , an, we wish to cover them with exactly K intervals. For example, the
points {1, 3, 4, 7} are covered by the 2 intervals {[1, 3], [4, 7]}, or by intervals {[1, 1], [3, 7]} (i.e., zero length
intervals are fine.)

(a) The `1-cost of a set of intervals {[x1, y1], . . . , [xk, yk]} is ∑k |xk − yk|. Give an efficient algorithm that
given an ordered set of n points produces the minimum `1-cost K interval cover. Briefly justify cor-
rectness and state the time and space complexity. (8 points)

Algorithm:

Solution: Choose the largest K− 1 `1-gaps between adjacent points to divide the interval [a1, an] into
K intervals. The `1-gap size between ai and ai+1 is |ai+1 − ai|.
Justification. Solution: The total cost is |an − a1|− sum of gap sizes. This is minimized when the gap
sizes are maximized. Choosing K− 1 numbers greedily from n− 1 yields the set of maximum sum.

Time/Space complexity.

Solution: O(n + K log n) since one can use a heap to find the largest element in the set of gap sizes.
The space used is O(n).

(b) The `2-cost of a set of intervals {[x1, y1], . . . , [xk, yk]} is ∑k |xk − yk|2.

Give an efficient algorithm that given an ordered set of n points produces the minimum `2-cost K
interval cover. Briefly justify correctness and state the time and space complexity. (8 points)
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Algorithm:

Solution: Let D(i, k) be the minimum `2 cost of the set of points {a1, . . . , ai} with k intervals, where
the last interval ends at k.

This can be recursively computed using the recurrence:

D(i, k) = min
j<i

(D(j, k− 1) + |ai − a2
j+1|2)

The base cases are D(0, 0) = 0, D(i, 0) = ∞.

Justification.

Solution: The last interval in a solution with value D(i, k) is of the form [aj, ai], and a solution of value
D(j, k− 1). The recurrence chooses the best of those two form. The base cases indicate that covering
nothing cost nothing and that covering with nothing is infeasible. Time/Space complexity.

Solution: Time is O(n2K) since there are O(nK) subproblems and each can be filled in, in time O(n).
If one fills in the table in increasing order of k, one can use O(n) space.
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