1 Cell Arrays (12 points) Page 2 of 11

(2 points each) Record the output of the following MATLAB commands by completing every blank outp'u‘c
line. If the line would return an error, write “error.” If the line would start an infinite loop/recursion, write
“infinite loop.”
>> clear;
>> A = {[true, false], ones(2,2)J 'EASY QUESTION', [5 10; 15 20;

25 301};

‘[,[o § /)/L)

>> class(A(2,1)) ‘ \) .

{254 G 1huAY
ans = C@\\ L////

>> class(A{1,1})
hon Pl | \f.tf-‘-\
bogicel v S
\l
>> size(A(1,2))
R

>> size (A{41})

v o v

ans =

ans =

ans =

>> A{2,2}(1,2)+A{1,2}(2,2)

.-

>> A{1} + A{2}

Berof, \/

ans =

2 Structures (10 points)

Page 3 of 11

(2 points each) Record the output of the following MATLAB commands by completing every blank output
line. If the line would return an error, write “error.” If the line would start an infinite loop/recursion, write

“infinite loop.”

>> clear;

>> cars = struct (‘make’,{’Audi’,’BMW'},’model’,{’A7’,'M5'});
>> trucks = struct(‘make’,’Ford’,’'model’,’F150’,’year’,2004) ;

—

>> class(trucks (1) .year)

ans = AO‘ALi(

>> size(cars)

L

ans = \

>> cars(2) .make

M

ans

>> [cars, trucks]

e = Eqrol

>> cars(2) .year = 2010;
>> candt = [cars,trucks];

>> candt (1) .year

a}@ /ﬁ LD

8

gt

\
Cous (1) bty

TR (‘-‘\. wely

Page 4 of 11
3 Logicals (16 points)

(2 points each) Record the output of the following MATLAB commands by completing every blank outpllt
line. If the line would return an error, write “error.” If the line would start an infinite loop/recursion, write

“infinite loop.”
>> clear;
>> true || false

\

ans = [
\g

>> 27=1 && 1==str2num('1")

/
ans = __| L/
S

> x = [1 -3 0; 1 47; -81 3];
>> logical(mod(x,2))

Vo
) 0 |
ans = A | k
U \
>> x = [1 001 1]1;
>>y = [0 00 0 0];
>> any(x) || any(y) X‘

ans =100 \ |\

>> false & 0/0

ans = __E060 \///,
>> false && 0/0 \///
S —

Q ~ ~
>> (false & true) == (“false) | (“true)

e = IO v

{ :

Page 5 of 11
4 Loops (16 points)

4.1 Given a partial sum

Euler showed that

=1 2
5= m =g

(4 points) The script below computes the number of terms, n, necessary to attain a solution to a tolerance
of 1073, i.e. |Sn - 7r2/6| < 1073, Circle the line that has a programming mistake:

while d <= @ i
Sn = sum((1:n) .~ -2); ’\”‘\ -
e = abs(Sn-pi~2/6);
n = n+1;
10 end

Page 6 of 11

4.2 (4 points each) Record the output of the following MATLAB commands by completing every blank
output line. If the line would return an error, write “error.” If the line would start an infinite loop/recursion,
write “infinite loop.”

>> clear; PR
>> x=1; y=2; 2z=3; g
>> for k=1:3 l@“) ’JD
>> X=2%X; v= %
>> while x<5 _c y =10.
>> y=y+1;”\ 3= \1"”‘ ‘I’j
>> Z=Z XX ; 1= G —),t‘(l 2 -1l o
>> X=y;) L XS
>> end \"3\ n=H
>> end
>> x /
X = 1Q
>> y C/
e S
>> z C/
z = /!‘2\

Ik S A ke

2-6 Yz

l{ }(:S)‘:,() “‘/7/57.

5 If-Else and Switch (20 points)

Consider the following function, mysteryFunction:

Page 7 of 11

function y = mysteryFunction (x)
y = ! I;
if x &
y = [y’ /a/];
elseif x > 10
y = [y, 'b'1;
end
—if x < 16 e Vot
remain = rem(x, 8); 2.9
switch remain ! '
case 1° ®
case {3, 5, 7}
y = ngg%gg;LfEﬁafn);
otherwise
y = remain;
end W=TL.
end d
end

-
<
<

Record the output of the following MATLAB commands by

completing every blank output line. If the line

would return an error, write “error.” If the line would start an infinite loop/recursion, write “infinite loop.”

(3 points each) (1

>> clear;
>> mysteryFunction (9)

vl \/

ans = _9 ' ans =

>> mysteryFunction (3)

s = 3 v

>> mysteryFunctioi;})
N

ans = ans =

>> mysteryFunction (0)

ans = 0 ans =

>> mysteryFunction (-1)

ans =

ans =

point each)

>> clear;
>> class(mysteryFunction (9))

C\«C\r

v

>> class(mysteryFunction (3))

clqm 'y \/

>> class(mysteryFunction (1))

Chhr

>> class(mysteryFunction (0))

clf'u.“ E \/

>> class(mysteryFunction(-1))

\1J >X; ans =

chay el

Page 8 of 11

6 Recursion (18 points) UC

, ok\0
6.1 Consider the following function, multiplyByRecursiion:f) \U\
[HAY
function y = multiplyByRecursion(AY b) \U, 0
if a == 1 g YL e
y = b; Hh9 W >\¥ et =
elseif b == \Oy\Y)
) 1 St £S o \ (
y = a; L\ 9
else /
V4 <===--=- one line of code goes here
end

mutliplyByRecursion(a, b) calculates the product of a and b using only + or — operators, where a and
b are both positive integers.

(5 points) There is one incomplete line in the code given above. Given choices a — e, which /'m s) make(s)
the code work properly? Circle your answer(s). No partial credit.

. < Y))

=-multiplyByRecursion(a, b - 1) + a_ ‘ N2

-
/

+

= multiplyByRecursion(a, b - 1) + b

o

= multiplyByRecursion(a - 1, b) + a
= multiplyByRecursion(a - 1, b) + b

= multiplyByRecursion(a - 1, b - 1) +a +b -1 W g,

(5 points) Assume a = 100, b = 200. Which correct solution(s) from the previous part make(s) the most
calls to multiplyByRecursion? Circle your answer(s). No partial credit.

multiplyByRecursion(a, b - 1) + a

multiplyByRecursion(a, b - 1) + b
multiplyByRecursion(a - 1, b) + a

a2 &
S N
- o<
oo

multiplyByRecursion(a - 1, b) + b
multiplyByRecursion(a - 1, b - 1) +a+b -1

—_
o]
~
<

I

Page 9 of 11
6.2 Consider following function. su=DownBy?2:

. {function y = suzDownBy2(n)
? if n ==1
y = 1
else
. y = n + sumDownBy2(n-2);
; end o -

AN
| -

(4 points each) Record the output of the following MATLAB commands by completing every blank output

line. If the line would return an error, write “error.” If the line would start an infinite loop/recursion, write
~infinite loop.”

>> clear;
>> sumDownBy2 (9)

f‘;r’ :
ans = - J //

>> sumDownBy2 (8) \//

ans = -\kaH#Q (GCQ

Lﬁ ’\k KLA
L X)

Ly \

7 Linear Algebra (8 points)

Consider the following system of linear equations:

3xg — 4z +5z3 =1
2z — 39 + dra =4
—Iy+4z3 — 21 = 6,

where the solution x follows the order:

(4 points each) Complete the MATLAB code below to solve the system.

>> clear;

>> A = [’%Lf

>> b

]
(]
ge—
AN
—
S
a>
—

>> x = A\b;

Page 10 of 11

Page 11 of 11
Function Help Pages

>>help mod
mod: Modulus after division.

mod(x,y) returns x - floor(x./y) .=y if y~=0, carefully computed to avoid rounding error. If y
is not an integer and the quotient x./y is within roundoff error of an integer. then n is that integer.
The inputs x and y must be real and have compatible sizes. In the simplest cases, they can be the
same size or one can be a scalar. Two inputs have compatible sizes if. for every dimension, the
dimension sizes of the inputs are either the same or one of them is 1. The statement “x and y are
congruent mod m” means nod(x,z) == mod (y,m).

By convention:

mod (x,0) is x.
mod(x,x) is O.
mod(x,y), for x~=y and y~=0. has the same sign as y.

Note: rem(x,y), for x~=y and y~=0. has the same sign as x. zod(z,y) and rex(x,y) are equal if x and y
have the same sign, but differ by y if x and y have different signs.

>>help rem
rem: Remainder after division.

rem(x,y) returns x - fix(x./y).xy if y~=0. carefullv computed to void rounding error. If y is
not an integer and the quotient x./y is within roundof error of an integer. then r is that integer.
The inputs x and y must be real and have compatible sizes. In the simplest cases. they can be the
same size or one can be a scalar. Two inputs have compatible sizes if. for every dimension. the
dimension sizes of the inputs are either the same or one of them is 1.

By convention:

rerx(x,0) is NaN.
rem(x,x), for x~=0, is 0.
rem(x,y). for x~=y and y~=0, has the same sign as x.

Note: mod(x,y). for x~=y and y~=0, has the same sign as y. re=(x,y) and zod(x,y) are equal if x and ¥
have the same sign, but differ by y if x and y have different signs.

>> help floor
floor: Round towards minus infinity.

floor(x) rounds the elements of x to the nearest integers towards minus infinicy.

>> help fix
fix: Round towards zero.

fix(x) rounds the elements of x to the nearest integers towards zero.

