CS 61BL Data Structures & Programming Methodology

Summer 2018

MIDTERM 3 SOLUTION

This exam has 9 questions worth a total of 25 points and is to be completed in 80 minutes.

The exam is closed book except for three double-sided, handwritten cheat sheets. No calculators or

other electronic devices are permitted. Give your answers and show your work in the space provided.

Write the statement below in the blank provided and sign. You may do this before the exam begins.

“I have neither given nor received any assistance in the taking of this exam.”

I have neither given nor received any assistance in the taking of this exam.

Signature: Blear Hug

Name Blear Hug
Student 1D 1234567890
0.0 1

Lab Section

Name of person to left

Christine Zhou

Question | Points

I v,
2 ,
3 2
4 6
5 5
6 3
7 4
3 4
9 0

Total 25

Name of person to right

Kevin Lin

e There may be partial credit for incomplete answers. Write as much of the solution as you can,

but we may deduct points if your answers are much more complicated than necessary.

e Work through the problems with which you are comfortable first. Do not get overly captivated

by interesting design issues or complex corner cases you’re not sure about.

o Not all information provided in a problem may be useful, and you may not need all lines. For

code-writing questions, write only one statement per line and do not write outside the lines.

« Unless otherwise stated, all given code on this exam should compile. All code has been compiled

and executed, but in the event that we do catch any bugs in the exam, we’ll announce a fix.

Unless we specifically give you the option, the correct answer is not, ‘does not compile.

1. (% pt) Your Thoughts If you were a food, what food would you be and why?

A golden pell bepper.



CS 61BL Midterm 3, Summer 2018

2. (% pt) So It Begins Write the statement on the front page and sign. Write your name, ID, and

your lab section. Write the names of your neighbors. Write your name in the corner of every page.

3. Balanced Search Trees If you need to split a node in a 2-3 tree, insert the new element in the
corresponding node and send up the resulting middle element. If you need to split a node in a 2-3-4

tree, send up the middle element, and then insert the new element in the corresponding node.

(a) (1 pt) Draw the resulting red-black tree in the box after inserting 11 into the tree below. Indicate

red nodes by putting an asterisk (*) next to the number of the node. If a node has one red

(b) (1 pt) Answer the following questions about 2-3 trees with exact values. 2-3 trees may

child, draw it as left-leaning.

contain any integer value as an element.

13

(a) What is the maximum number of items that we can insert and not increase the height?

(a) 13

(b) What is the minimum number of items that we can insert and increase the height?

(b) 3




Name: Blear Hug

4. Design Choose the data structure that would best solve each scenario in terms of execution time

and ease of use and give the worst-case runtime in O(-) notation. Then, explain how you would use

the data structure in no more than three lines. Assume linked lists have a sentinel and references to

the first and last node. Assume each item can be hashed in constant time with a uniform distribution

and can be compared with each other. There may be multiple correct answers, but choose only one.

()

(2 pts) Consider a smartphone notification system. Notifications can be added and processed
one at a time. Processing a notification removes the most recently-added notification from the

system. At any given time, there will be at most N notifications.

@® Linked list (O Fixed-size array (O Red-black tree (O Binary heap (O Hash table

Add: ©(1 ) Process: O(1 )

Linked list. We have pointers to the front and the back of the list, so adding or removing
elements from the front or back will be fast. We can always add to and remove from the front
of the list whenever we add a notification and process a notification respectively because we

only need to know about the most recent notification.

(2 pts) You are designing a game where users can play for free, but they can also pay real
money to unlock different characters. The game has a total of IV different software bugs which
need to be fixed. Users can submit bug reports for any number of these N bugs. Only one bug
can be fixed at a time, so we want to choose the fix that resolves the most bug reports.

However, you consider paying users twice as important as non-paying users. Any bug report
submitted by a paying user is worth two bug reports from a non-paying user. Design a system
that will let users report bugs, find the most important bug with the most bug reports — with
special consideration to reports from paying users, and remove the most important bug.

O Linked list O Fixed-size array O Red-black tree @ Binary heap (O Hash table

Report: O(N ) Find: ©(1 ) Remove: ©(log N )

Heap. Each bug is an item in the heap with the number of bug reports submitted for that bug
as the priority value. We will be using a max heap in order to keep track of which bug has been
reported by the most people. When a new bug is reported, insert it into the heap with priority
1 or 2 (depending on if the user is paying or non-paying). When a bug already in the system
is reported, find the item in the heap, increment the priority of the bug by 1 (non-paying) or 2
(paying), and reheapify that item. Returning the next bug to fix will be a constant time peek

operation, but removing will be a logarithmic time poll operation.
(2 pts) Design a DataType that can add items and return all added items in sorted order.

DataType dt = new DataType(); dt.add(10); dt.add(4); dt.add(3); dt.add(8);
dt.sorted(); // 3 48 10
dt.add(5); dt.add(7); dt.sorted(); // 3457 8 10

Assume the DataType already contains N items.

O Linked list (O Fixed-size array @ Red-black tree O Binary heap (O Hash table



CS 61BL Midterm 3, Summer 2018

add: O(log NV ) sorted: O(NV )

Red-black tree. If there are N items in DataType, then the height of the tree will be log N.
Inserting an item into the tree will take log N time, and the sorted order of all the items will

be an inorder traversal of the red-black tree, which will take N time.



5. (5 pts) Hashing Recall that the String::equals method is defined as follows.

Name: Blear Hug

public boolean equals(Object o) {

}

if (this == 0) return true;
if (!(o instanceof String)) return false;
String other = (String) o;
if (length() != other.length()) return false;
for (int i = 0; i < length(); i += 1)
if (charAt(i) != other.charAt(i)) return false;

return true;

Suppose we have three hash table Set implementations that use linked lists for external chaining: (i)

resizing when load factor L = 1, (ii) resizing when L = +/N, and (iil) without resizing, L = @. Give

the worst-case runtime for inserting one String in terms of M, length of the string, and NV,

number of items. For this entire question, assume this insertion does not cause a resize.

(a) For part (a), assume that the String::hashCode given below distributes values uniformly.

public int hashCode() {
int h = 9;
for (int i = @; i < length(); i += 1)
h =31 * h + charAt(i);
return h;

i. L=1: (M ) ii. L=+vN: O(MV/N ) iii. L=2: O(MN )

Suppose that we changed the String: :hashCode to the following.

public int hashCode() {
return charAt(@) + charAt(length() - 1);

i. L=1: O(MN ) ii. L=+vN: O(MN ) iii. L=2: O(MN )

A MutableString can change its current value by calling mutate(String value). Fill in a

newValue so that the current value of test changes and main prints true for any initial

capacity, C. Assume MutableString::equals calls String::equals on its current value, and

MutableString: :hashCode calls the hashCode defined in part (b) on its current value as well.

public static void main(String[] args) {
HashSet<MutableString> set = new HashSet<>(C);
MutableString test = new MutableString("pell bepper");
set.add(test);
String newValue = "pear ;

test.mutate(newValue);

System.out.println(set.contains(new MutableString(newValue))); //

true



CS 61BL Midterm 3, Summer 2018

. (3 pts) Restaurants It’s lunch time and you’re hungry. But you don’t want to eat just anywhere,
you want to eat at the highest-rated places! Implement kBestRestaurants, which takes a list of all
the restaurants in the area and an integer, k, and returns an array of the k highest-rated restaurants
sorted from highest-rated to lowest-rated in O (N log k) time. The Restaurant class is defined below,
where restaurants with larger rating values are rated higher than restaurants with smaller rating

values. The PriorityQueue class is also defined below and is implemented with a binary min heap.

public class Restaurant {
String name;
Double rating;

}

public static Restaurant[] kBestRestaurants(List<Restaurant> restaurants, int k) {

PriorityQueue<Restaurant> pgq = new PriorityQueue<>(k,

(o1, 02) -> ol.rating.compareTo(o2.rating) );
for (Restaurant r : restaurants ) {
pg.add(r) ;

>~—
p—g
~

if (pg.size() >

Pg.poll() ;

Restaurant[] result = new Restaurant[k] ;

for (int i = 0; i <k; i +=1 ) {

result[k - 1 - i] = pg.poll() ;

return result ;

b

public class PriorityQueue<E> {
PriorityQueue(int initialCapacity, Comparator<? super E> comparator);
boolean add(E e);
E peek();
E poll();
int size();



Name: Blear Hug

7. (4 pts) Tree Traversals In lab, we explored a case of the B-tree called a 2-3-4 tree. Implement
inorderTraversal for a B-tree of any number of items, which returns a list of all the items in
sorted order. Recall that each internal node in a B-tree has one more child than number of items.
The children of a leaf node are all null. You may find the List instance method, boolean addAll(

Collection<E> c), useful, though this method is not necessary to solve the problem.

public class BTree<T extends Comparable<T>> {

private Node root;
private class Node {
private List<T> items;

private List<Node> children;

private List<T> helper(List<T> lst) {

int i;
for (i = @; i < items.size(); i += 1 ) {
if (children.get(i) != null ) {
children.get(i).helper(lst) ;
}

3

if (children.get(i) != null ) {
children.get(i).helper(lst) ;

}

return 1st;

public List<T> inorderTraversal() {

if (root != null ) {

return root.helper(new ArrayList<>()) ;

}

return null;



CS 61BL Midterm 3, Summer 2018

8. (4 pts) Heapify Implement toMaxHeap, which destructively converts a complete binary search
tree into a valid max heap in time linear to the number of nodes, N, with one additional invariant:
for each node, all elements in the left subtree must be smaller than the elements in the right subtree.
The inorderIterator method is an instance method of BinaryTree that will return an Iterator

object that outputs next element in the inorder traversal of the tree whenever next is called.

(1) (1)
toMaxHeap ()
(20 (o) — () (o)
OXOXORO. OJOX0R0

public class BinaryTree<T> {
private TreeNode root;
private class TreeNode {
T item;
TreeNode left;
TreeNode right;

public void toMaxHeap() {
if (root != null) {
Iterator<T> iter = inorderlIterator();

helper(root, iter) ;

3
}
private void helper(TreeNode n, Iterator<T> iter ) {
if (n != null ) A{
helper(n.left, iter) ;
helper(n.right, iter) ;
n.item = iter.next() )
}
}

b

9. (0 pts) HBD Which staff member’s birthday is closest to today’s date, and how old will they be?

Jonathan Murata, pretty old.



This page intentionally left blank. Please enjoy this space.

(0 pts) Who would win: course staff or a T-rex? Explain your answer pictorally, and give the

worst-case runtime bound of the encounter in O(-) notation.



Ezxam scratch paper.



