
CS 61BL Data Structures & Programming Methodology
Summer 2018 Final Exam Solution

This exam has 8 questions worth a total of 60 points and is to be completed in 110 minutes.
The exam is closed book except for four double-sided, handwritten cheat sheets. No calculators or
other electronic devices are permitted. Give your answers and show your work in the space provided.
Write the statement below in the blank provided and sign. You may do this before the exam begins.

“I have neither given nor received any assistance in the taking of this exam.”

I have neither given nor received any assistance in the taking of this exam.I have neither given nor received any assistance in the taking of this exam.

Signature: Blear HugBlear Hug

Question Points
1 1/2

2 1/2

3 10
4 14
5 9
6 12
7 14
8 0

Total 60

Name Blear Hug

Student ID 1234567890

Lab Section 00 00 11

Name of person to left Christine Zhou

Name of person to right Kevin Lin

• There may be partial credit for incomplete answers. Write as much of the solution as you can,
but we may deduct points if your answers are much more complicated than necessary.

• Work through the problems with which you are comfortable first. Do not get overly captivated
by interesting design issues or complex corner cases you’re not sure about.

• Not all information provided in a problem may be useful, and you may not need all lines. For
code-writing questions, write only one statement per line and do not write outside the lines.

• Unless otherwise stated, all given code on this exam should compile. All code has been compiled
and executed, but in the event that we do catch any bugs in the exam, we’ll announce a fix.
Unless we specifically give you the option, the correct answer is not, ‘does not compile.’

• # means that only one circle may be filled. 2 means that more than one box may be filled.

1. (1/2 pt) Your Thoughts What makes you strong?

Hopes and dreams.

CS 61BL Final Exam, Summer 2018

2. (1/2 pt) So It Begins Write the statement on the front page and sign. Write your name, ID, and
your lab section. Write the names of your neighbors. Write your name in the corner of every page.

3. Wayback Machine

(a) (5 pts) Implement doubleUp, which takes a non-negative int width and returns a symmetric
int[] of length width * 2 + 1 with values doubling then halving.

• doubleUp(0) returns [1];
• doubleUp(1) returns [1, 2, 1];

• doubleUp(2) returns [1, 2, 4, 2, 1];
• doubleUp(3) returns [1, 2, 4, 8, 4, 2, 1].

public static int[] doubleUp(int width) {

int[] result = new int[width * 2 + 1];

int value = 1;

for (int i = 0; i < width; i += 1i < width; i += 1) {

result[i] = valueresult[i] = value ;

value *= 2value *= 2 ;

}

result[width] = valueresult[width] = value ;

for (int i = 0; i < width; i += 1int i = 0; i < width; i += 1) {

value /= 2value /= 2 ;

result[width + 1 + i] = valueresult[width + 1 + i] = value ;

}

return result;

}

(b) (5 pts) Complete the assignment statements for helper so that reverse reverses the linked list.
Hint: Draw out small examples and make use of the three local variables, soFar, p, and temp.

public class SLList {

private static class IntNode {

public int item;

public IntNode next;

}

public IntNode sentinel;

public void reverse() {

if (sentinel.next != null)

sentinel.next = helper(sentinel.next);

}

Continued on the next page.

2

Name: Blear HugBlear Hug

private static IntNode helper(IntNode front) {

IntNode soFar = null;

IntNode p = front;

while (p != null) {

IntNode temp = p.next;

p.nextp.next = soFarsoFar ;

soFarsoFar = pp ;

pp = temptemp ;

}

return soFar;

}

}

4. Graphs The framework below contains part of a class that implements a graph with adjacency
lists. Part (a) involves the design of an EdgeIterator class that enumerates the edges of the graph.

Note: The graph is not necessarily connected. It may not even contain any edges at all.

public class Graph implements Iterable<Edge>{

private List<Integer>[] neighbors;

public Graph(int V) {

neighbors = (List<Integer>[]) new LinkedList[V];

for (int i = 0; i < V; i += 1) {

neighbors[i] = new LinkedList<>();

}

}

public void addEdge(int from, int to) {

neighbors[from].add(to);

}

public static class Edge {

public final int from;

public final int to;

public Edge(int from, int to) {

this.from = from;

this.to = to;

}

}

public Iterator<Edge> iterator() {

return new EdgeIterator();

}

Continued on the next page.

3

CS 61BL Final Exam, Summer 2018

(a) (5 pts) Implement EdgeIterator, an inner class which returns a new Edge on each call to next,
until all edges in the graph have been enumerated.

public class EdgeIterator implements Iterator<Edge> {

private int index = 0;

private Iterator<Integer> iter;

public EdgeIterator() {

while (index < neighbors.lengthindex < neighbors.length) {

if (!neighbors[index].isEmpty()!neighbors[index].isEmpty()) {

iter = neighbors[index].iterator()iter = neighbors[index].iterator() ;

return;

}

index += 1;

}

}

public boolean hasNext() {

return iter.hasNext() || index < neighbors.lengthiter.hasNext() || index < neighbors.length ;

}

public Edge next() {

Edge toReturn = new Edge(index, iter.next())new Edge(index, iter.next()) ;

if (!iter.hasNext()!iter.hasNext()) {

index += 1;

while (index < neighbors.lengthindex < neighbors.length) {

if (!neighbors[index].isEmpty()!neighbors[index].isEmpty()) {

iter = neighbors[index].iterator()iter = neighbors[index].iterator() ;

return toReturn;

}

index += 1index += 1 ;

}

}

return toReturn;

}

} // EdgeIterator class

} // Graph class

4

Name: Blear HugBlear Hug

(b) (11/2 pts) Give the runtime of DFS on a undirected, unweighted, complete graph, G = (V,E).
In a complete graph, every vertex has an edge to every other vertex. Mark all that apply.

2 Θ(1) 2 Θ(|V |) � Θ(|V |2) 2 Θ(|V |3) � Θ(|E|) 2 Θ(|E|2) 2 Θ(|E|3)

(c) (11/2 pts) Suppose we have a connected graph G = (V,E) with 3 edges of weight 0 but all
other edges have distinct, positive weights. What is the minimum and maximum number of
minimum spanning trees G could have? Give exact values.

Min: 11 ; Max: 33

(d) (11/2 pts) Given a sorted list of edge weights, find a minimum spanning tree on a graph,
G = (V,E). Assume that G is fully-connected: a path exists between every pair of vertices.
Which one of Kruskal’s or Prim’s Algorithm runs faster given the sorted edge list? Then, give
the optimized runtime in terms of |V | and |E|, the number of vertices and edges.

Prim’s Algorithm: Θ() Kruskal’s Algorithm: Θ(|E| · α(|V |)|E| · α(|V |))

Let the graph G have distinct weights. Let G′ be the same graph except each weight increased by 1.

(e) (11/2 pts) Suppose we run DFS on G and G′ to find a path between two vertices in the graph.
Assume that neighbors are added to the stack in the same order. Would the paths be the same?

 Always # Never # Depends on the graph, G

(f) (11/2 pts) Suppose we run Prim’s Algorithm on G and G′. Would the MSTs be the same?

 Always # Never # Depends on the graph, G

(g) (11/2 pts) Suppose we run Dijkstra’s Algorithm on G and G′ to find the shortest path between
two vertices in the graph. Would the shortest paths be the same?

Always # Never Depends on the graph, G

5. Sorting

(a) (11/2 pts) How many inversions are in the list, [3, 6, 2, 5, 4]? Inversions: 55

(b) (11/2 pts) Give the array representation for a min-heap of five integers between [1, 5] (possibly
duplicated) that results in the best-case runtime for heapsort.

11 11 11 11 11

(c) (11/2 pts) Suppose we have a priority queue whose operations (insert, poll, changePriority)
all execute in Θ(1) time, regardless of key type. Give a tight asymptotic runtime bound to
heapsort a list of N items using this priority queue.

Runtime: Θ(NN)

(d) (11/2 pts) Can a priority queue with all Θ(1) operations (insert, poll, changePriority) exist?

In the general scenario, this would mean that we could sort an arbitrary number of items
in linear time, which would violate the comparison sort runtime lower bound of Ω(N logN).
However, we also just showed the existence of a Θ(1)-time operation priority queue above which
can exist when the number of unique objects in a class is constant!

Yes, it can exist for any key type # No, it cannot exist Depends on the key type

5

CS 61BL Final Exam, Summer 2018

(e) (3 pts) Suppose we’re considering alternatives to the counting sort algorithm used in LSD radix
sort. When used as the sorting algorithm in LSD radix sort, which of the following sorts is
guaranteed to correctly sort a list in Θ(WN logN) time, where W is the length of the longest
key and N is the number of keys? Assume the radix, R, is constant. Mark all that apply.

2 Insertion sort 2 Selection sort 2 Binary tree sort � Balanced tree sort
2 Heapsort � Merge sort 2 Quicksort (three-way partition) 2 Counting sort

6

Name: Blear HugBlear Hug

6. Runtime For each problem, give the worst-case runtime in Θ(·) notation as a function of N . Your
answer should be simple with no unnecessary leading constants or summations.

(a) (3 pts) TreeMap is implemented using a red-black tree. Worst Case: Θ(N logNN logN)

Map<Integer, String> map = new TreeMap<>();

for (int i = 0; i < N; i += 1) {

map.put(i, "foo");

}

(b) (3 pts) LinkedList is doubly-linked with front/back pointers. Worst Case: Θ(N2N2)

List<Integer> list = new LinkedList<>();

for (int i = 0; i < N; i += 1) {

if (!list.contains(i * 2)) {

list.add(i);

}

}

for (int j = 0; j < N; j += 1) {

list.add(j);

}

(c) (3 pts) Assume HashMap and HashSet use linked lists for external chaining, double in size when
the load factor exceeds L = 0.75, and Integer::hashCode distributes values uniformly and can
be computed in constant time.

Worst Case: Θ(N2N2)
Map<Integer, Integer> map = new HashMap<>();

for (int i = 0; i < N; i += 1) {

map.put(i, i + 1);

}

int sum = 0;

for (int i : map.keySet()) {

Set<Integer> copy = new HashSet<>(map.values());

if (copy.contains(i * 2)) {

sum += 1;

}

}

(d) (3 pts) ArrayList is implemented with geometric resizing. Worst Case: Θ(N2N2)

PriorityQueue<Integer> heap = new PriorityQueue<>();

for (int i = 0; i < N; i += 1) {

heap.add(i);

}

List<Integer> list = new ArrayList<>();

while (!heap.isEmpty()) {

list.add(0, heap.poll()); // add(int index, E element)

}

7

CS 61BL Final Exam, Summer 2018

7. Design For each of the following design questions, a complete solution will include:

• a description of the algorithm in enough detail that another student could easily implement it;

• which data structures or algorithms enable your algorithm to execute as quickly as possible;

• the worst-case asymptotic runtime bound in Θ(·) notation with a justification in the description.

If you think a certain step of your algorithm could be made more efficient but aren’t sure exactly how

to make it faster, precisely state the inefficiency and other ideas you considered for partial credit.

(a) (4 pts) Consider the hasheap table, a twist on the usual hash table, that works as follows. First,
create an array of length M . Then, for each integer x we’d like to add, compute its index with
x mod M (x % M). To resolve collisions, use binary min-heaps for external chaining. Describe
an efficient algorithm for hasheap sort, which sorts a list of integers using a hasheap table.

I wish to receive 1/2 pt for this question; don’t grade my answer.

Since each external chain is a binary min-heap, we want a way to efficiently determine which
of the M buckets contains the next smallest item. An inefficient solution would loop over all
the buckets and keep track of the smallest element. But we can do better than that by creating
an additional priority queue of M items for keeping track of the current minimum item in each
bucket. In order to remember which bucket an item came from, define a wrapper class that
holds both the minimum value (used for comparison) and the originating bucket. When we
want to remove the minimum from this additional priority queue (in O(logM) time), replace
it with the next smallest item from the same originating bucket. The total runtime is then
upper-bounded by O(N logN) in the case that all items collide into the same bucket: no worse
than regular heap sort. In the case that integers are uniformly distributed, the runtime is
O(N logM log N

M), or O(N logN) since we suppose M is constant.

Give the worst-case runtime for hasheap sort on an unsorted array in terms of N , the number
of integers to be sorted. Assume M is constant.

Worst Case: Θ(N logNN logN)

(b) (4 pts) A spanning tree of a connected graph, G = (V,E), is itself a graph, G′ = (V ′, E′).
G′ is a tree (acyclic connected graph) where V ′ = V and E′ ⊆ E (all edges in E′ are also in E).
Describe an efficient algorithm that determines if G′ is a spanning tree of some other graph, G.

I wish to receive 1/2 pt for this question; don’t grade my answer.

The algorithm involves two steps. First, verify that G′ is a tree by counting its edges—there
must be exactly |V | − 1—or perform a depth-first search to make sure G′ contains no cycles.
(Note that G′ is connected.) Then make sure every edge in G′ is also in G.
G′ has to be in adjacency list format to the make the edge counting fast. G has to be in
adjacency matrix format to make the edge checking fast. Counting the edges is Θ(|E′|); verifying
containment is Θ(|E′|) since checking for an edge in G takes constant time. (Note that |E′| =
|V |, at least after the edge count is verified.)
With both graphs as adjacency lists, the running time is Θ(|V | · |E|); with both as matrices,
it’s Θ(|V |2).

Give the worst-case runtime in terms of |V |, |E|, and |E′|. Worst Case: Θ(|E′||E′|)

8

Name: Blear HugBlear Hug

(c) (6 pts) A k-d tree is a binary tree where each node contains a point of dimension k. Recall,

• “As one moves down the tree, one cycles through the axes used to select the splitting
planes. (For example, in a 3-dimensional tree, the root would have an x-aligned plane, the
root’s children would both have y-aligned planes, the root’s grandchildren would all have
z-aligned planes, the root’s great-grandchildren would all have x-aligned planes, [. . .].)

• Points are inserted by selecting the median of the points being put into the subtree, with
respect to their coordinates in the axis being used to create the splitting plane. (Note the as-
sumption that we feed the entire set of n points into the algorithm up-front.)” (Wikipedia)

Describe an efficient algorithm to construct a perfectly balanced k-d tree of dimension 2
given a list of N (x, y) decimal points. Assume that points are distinct, that points can have
infinitely-many decimal places, and that the x and y values are comparable and that their
hashCode uniformly distributes values and can be computed in constant time.
For full credit, your algorithm must have a worst-case runtime strictly better than Θ(N log2 N).

I wish to receive 1/2 pt for this question; don’t grade my answer.

To help guide our intuition for the problem, let’s establish some lower and upper bounds on
k-d tree construction.
We must consider all the points to be inserted, so our algorithm must run in Ω(N) time. As an
upper bound for a naive algorithm, we can simply sort the sublists on each recursive call. Each
recursive call divides the problem in half, and each half can then be merge-sorted in Θ(M logM)
time, whereM represents the size of the list in some particular recursive call. The work at each
level then sums to Θ(M log M

d) = Θ(M logM−log d) where d is the depth of the node in the tree.
To compute the overall runtime, we substitute in N , the total number of points, for M . Since
our resulting tree will be perfectly balanced, we have Θ(logN) levels. Plugging in the runtime
per level from earlier and simplify the d factor using the arithmetic sum, the overall runtime as
a result of re-sorting the list at each call is in Θ(logN · (N logN − log2 N)) = Θ(N log2 N).
Our goal is to develop an Θ(N logN) algorithm for balanced k-d tree construction. There are
two problems we need to solve: finding the median, and computing the next set of less-

than and greater-than sublists. In order to achieve this, we will need to make sure that
each recursive call only does work linear to the number of elements at that call, O(M), rather
than in Θ(M logM) as in the recursive re-sorting approach. We cannot use comparison-based
sorting algorithms as they are lower-bounded by Ω(M logM). We also cannot use radix-based
sorting algorithms as the length of the key is potentially infinite.
To find the median, pre-sort the points by making two copies of the list in Θ(N) time and
then sorting them on x and y with merge sort in Θ(N logN) time. Then, finding the median is
constant-time with get(size() / 2) so long as we maintain the relative order of the sublists.
To compute the next set of less-than and greater-than sublists in Θ(M) time while

maintaining the sorted order of the lists, we’ll need our constructor to take in the two lists sorted
on x and y. We’ll show how to compute the sets in the case where the current node splits on
x. Computing the less-than and greater-than set of x is simple: just take the less-than sublist,
Xlt, from [0, size() / 2) and the greater-than sublist, Xgt, from [size() / 2 + 1, size()).

9

CS 61BL Final Exam, Summer 2018

Computing the less-than and greater-than sets for y is a little more tricky since we want all the
points in Xlt sorted by their y-value, and all the points in Xgt sorted by their y-value, and we
need to get both of these in constant time!
What we can do is put all the points in Xlt and Xgt into two HashSet objects to optimize
containment checks. Then, loop through the points in the list sorted on y, and for each point
p in the list, p is in the less-than set if p is in the HashSet of Xlt. We can define the greater-
than set analogously: p is in the greater-than set if p is in the HashSet of Xgt. Each of these
operations can be done in constant time for any one point (given the hashing assumptions in
the problem), so computing the entire less-than set and the entire greater-than set can be done
in Θ(M) time, where M is the size of the problem at any given recursive call.
Alternatively, we can avoid sorting the list entirely and instead use a complicated but asymptotically-
optimal median finding algorithm like quickselect with median of medians as the pivot selection
strategy. Quickselect is normally a worst-case quadratic time algorithm, but we can use me-
dian of medians to choose an approximate median as the pivot to avoid the worst-case runtime.
There’s no need to maintain any sorted order in this solution, and the constructor only needs to
take in a single list ofM points. This approach also guarantees O(M) runtime at each recursive
call.
Give the worst-case runtime in terms of N . Worst Case: Θ(N logNN logN)

8. (0 pts) Telepathy Write one word which you believe the largest number of students in the class
will also write. For each occurrence of the most commonly-written word, the entire class will receive
some amount of extra credit points.

??

10

Exam scratch paper.

