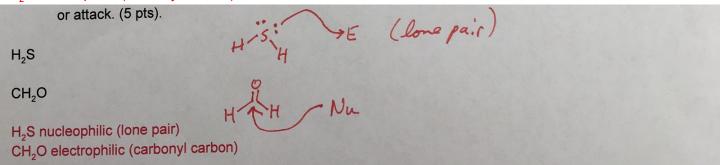

Warning: formal charges not always indicated/drawn, but you should in your answers!

1. Draw resonance forms for the following structures. (9 pts).

2. Which is more stable, O₂ or O₂⁺? Explain your rationales using molecular orbitals and calculations of the bonding orders for both. (12 pts).

bonding orders for both. (12 pts). 80 ZS Is 1k 1/ 15

 O_2^+ is more stable because O_2 has 2 pi antibonding electrons and O_2^+ only has 1. Bonding orders are 2 for O_2^- and 2.5 for O_2^+ .


3. Identify if the below molecules are nucleophilic or electrophilic and where the electrons would originate or attack. (5 pts).

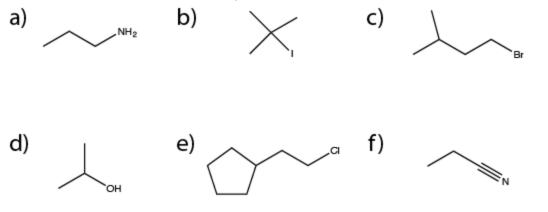
 H_2S

 CH_2O

 H_2S nucleophilic (lone pair)

CH₂O electrophilic (carbonyl carbon)

4. For the following SN2 reaction: (6 pts).

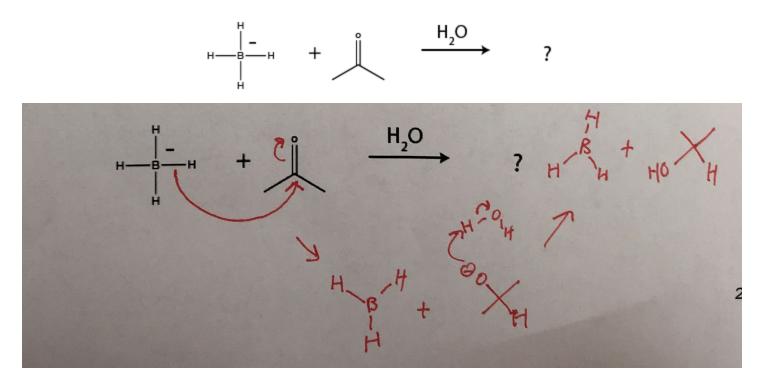

$$NaOCH_2CH_3 + CH_3CH_2Br \longrightarrow CH_3CH_2OCH_2CH_3$$

a) Replace bromoethane with bromomethane. Will the reaction happen slower, faster, or at the same rate?

Reaction is faster, less sterically hindered.

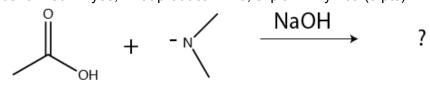
b) Replace EtBr with EtNH₃? Will the reaction happen slower, faster, or at the same rate? Reaction is faster, NH3 is a better leaving group.

5. Which of the following compounds would be expected to react in an SN2 manner at a reasonable rate with sodium azide (NaN₃) under basic conditions in an aprotic solvent? For those that do not react at a reasonable rate, explain why not. (12 pts).


- a) NH2 not a good LG, b) tertiary carbon, c) YES, d) OH not a good LG, e) YES, f) not a good LG.
- 6. For the following reaction, identify the HOMO and LUMO: (8 pts).

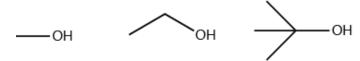
HOMO: pi bond

LUMO: H-Br anti-sigma bond

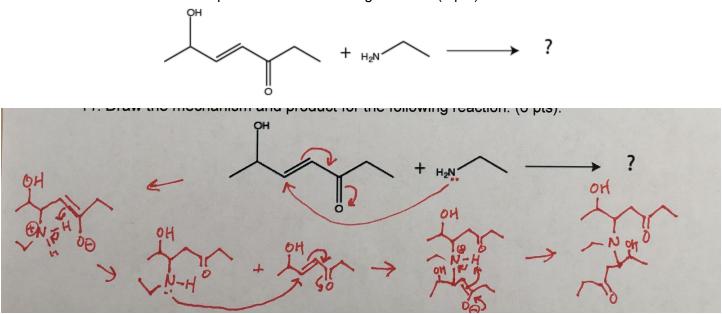

7. Draw a mechanism with an arrow-pushing mechanism for the following reaction: (5 pts).

8. Draw the molecular orbitals participating in pi bonding for the below allyl. How many electrons are in this pi system. Fill up the orbitals with electrons. (8 pts).

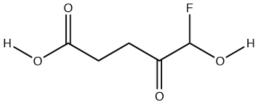
 $\frac{1}{100}$


9. Will a product be formed? If yes, what product? If no, explain why not. (8 pts).

No product, carboxylate has negative charge distributed to make carbonyl carbon a poor electrophile.

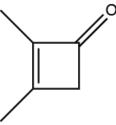

10. Which molecule is the best acid of those listed below? (6 pts).

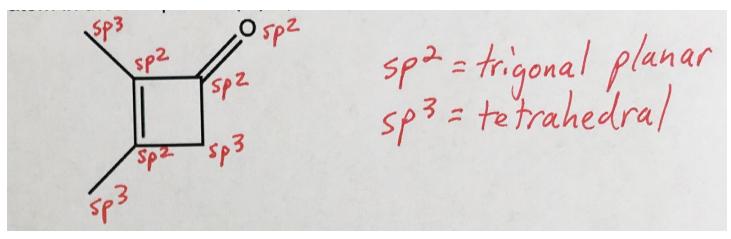
Name:



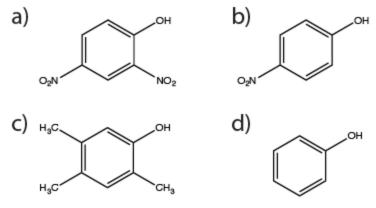
Primary carbon makes methanol more acidic (fewer electron donating carbons).

11. Draw the mechanism and product for the following reaction: (6 pts).




12. Compare the two protons identified below. Which proton is more acidic and explain why? (5 pts).

The Carboxyl proton is more acidic due to resonance


13. Identify the geometry for every atom in the compound. (5 pts).

Sp2 = trigonal planar Sp3 = tetrahedral

14. These phenols have approximate pK_a values of 4, 7,10, and 11. Suggest with explanations which pK_a value belongs to which phenol. (5 pts).

- a)
- b)
- C)

Name:_____

d)

a) 4

- b) 7 c) 11
- d) 10

1 IA 1A	Periodic Table of the Elements															VIIIA 8A	
Hydrogen [1.00784;1.00811]	2 IIA 2A							Atomic Number				13 IIIA 3A	14 IVA 4A	15 VA 5A	16 VIA 6A	17 VIIA 7A	He Helium 4.002002(2)
3 Lithium (8.008;6.007)	4 Beryllium 9.0121831(5)	Masses expre depending o	values reflect the IUPAC ssed in [a,b] format show in the physical and chemi used in <> format are th	the lower and upper lir cal history of the elemen	it of atomic mass	Symbol Name						5 Boron [10.806;10.821]	6 Carbon	7 N Nitrogen 14.00543;14.00728	8 Oxygen 15 00003,15 00077	9 Fluorine 18.998403163(6)	10 Neon 20.1797(6)
11 Na Sodium 22.99979929(2)	12 Mg Magnesium [24.304,24.307]	3 IIIB 3B	4 IVB 4B	6 UB 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	6 VIB 6B	7 VIIB 7B	8	9 	10	11 IB 1B	12 IIB 2B	13 Aluminum 26.991538668	14 Silicon 128.084.28.089	15 P Phosphorus 30.973761998(5)	16 S Sulfur 132,059-32,076	17 Cl Chlorine	18 Argon 39.948(1)
19 K Potassium 39.093/1)	20 Calcium	21 Scandium	22 Ti Titanium	23 V Vanadium	24 Cr Chromium	25 Mn Manganese	26 Fe	27 Co Cobalt	28 Ni Nickel	29 Cu Copper	30 Zn Zinc (5.302)	31 Gallium 08.723(1)	32 Germanium 72 600/8	33 Assenic 74.921595(6)	34 Selenium 78.971/0	35 Br Bromine 178 991 79 997	36 Krypton 83,799(2)
37 Rb Rubidium	38 Sr Strontium	39 Yttrium	40 Zr Zirconium	41 Nb Niobium	42 Mo Molybdenum	Tc	44 Ru Ruthenium	45 Rh Rhodium	46 Pd Palladium	47 Ag	48 Cd Cadmium	49 In Indium	50 Sn Tin	51 Sb Antimony	52 Te Tellurium	53 Iodine	54 Xe Xenon
55 Cesium	56 Ba Barium	88.00584(2) 57-71	72 Hf Hafnium	73 Tantalum	74 Tungsten	75 Re Rhenium	76 05 05 05 05 05 05 05	77 102.60550(2)	78 Pt Platinum	107.8882(2) 79 Gold	112.414(4) 80 Hg Mercury	114.818(1) 81 Thallium	118.710(7) 82 Lead	83 Bismuth	84 Polonium	85 At Astatine	86 Rn Radon
132.90545198(8) 87 Francium	137.327(7) 88 Radium	89-103	178.49(2) 104 Rutherfordium	105 Dubnium	183.84(1) 106 Seaborgium	188.207(1) 107 Bohrium \$272>	190.23(3) 108 Hassium	102.217(3) 109 Mt Meitnerium	110 Ds Darmstadtiun	111 Roentgenium	112 Copernicium	113 Uut Ununtrium	207.2(1) 114 Flerovium	115 Ununpentium	116 Lv	117 Ununseptium	118 Uuuo Ununoctium
Lambanice Series 89 9 10 10 10 10 10 10 10 10 10 10 10 10 10																	
	Ser	les Acti	inium The	rium Prota	tinium Ura	nium Nept	unium Plu	tonium Ame	ricium Cu	rium Berk	elium Califo	ornium Einst	einium Ferr	mium Mende	elevium Nob	elium Lawre	ncium %2>

© 2013 Todd Helmenstine chemistry.about.com sciencenotes.org