
Math 110 (Fall 2018) Midterm I (Monday September 24, 12:10-1:00)

1. Mark each of the following (1)–(4) True (T) or False (F). Don’t give a full proof but provide a
brief justification, no more than a few sentences. (Correct with justification = 4 pts, Correct but no
or wrong justification = 2 pts, Incorrect answer = 0 pt.) See the front page for notation.

(1) (F) Let V be a finite-dimensional vector space, β a basis for V , and W a subspace of V . Then
there is a subset of β which is a basis for W .

For example, if V = R2, β = {(1, 0), (0, 1)}, and W = {(a, a) : a ∈ R}, then neither of the vectors
in β is in W , so no subset of β is a basis for W .

(2) (F) Let T : V → W and U : W → Z be linear maps of finite dimensional vector spaces. If UT
is invertible, then either U or T (or possibly both) is invertible.

[A silly example] Take V = Z = {0}, W any nonzero space, thus T, U are the zero maps. Then UT
is invertible, but clearly U, T are not (since dimW is unequal to dimV and dimZ).

[A less silly example] Take T : R → R2, T (x) = (x, 0) and U : R2 → R with U(x, y) = x. Then
UT (x) = x so UT is invertible, but U and T are not (again for the dimension reason).

(3) (F) There exists a linear transformation T : R3 → R3 (over R) such that R(T ) = N(T ).

The dimension theorem says rank(T ) + nullity(T ) = 3 so rank and nullity must be different. There-
fore R(T ) 6= N(T ). (Namely if R(T ) and N(T ) were equal, their dimensions should be equal too.)

(4) (T) Let T : V → W be a linear map of finite dimensional vector spaces. If T t : W ∗ → V ∗ is the
zero transformation then T is also the zero transformation.

[Approach 1: more standard] By the dictionary we built up in chapter 2, the statement translates
into “If At is the zero matrix then so is A.” and this is true (since At simply rearranges the entries of
A). Such an answer is deemed correct.

For a rigorous way, let β, γ be ordered bases for V,W , and β∗, γ∗ the dual bases. Then

T t = 0 ⇒ [T t]β
∗

γ∗ = 0 ⇒ [T ]γβ = 0 ⇒ T = 0.

(The middle arrow comes from Theorem 2.25. We’re writing 0 for the zero map or the zero matrix.)

[Approach 2: using double duality] This is more complicated but a basis-free approach.

T t = 0⇒ ∀g ∈ W ∗, T t(g) = 0⇒ ∀g ∈ W ∗, g(T ) = 0⇒ ∀g ∈ W ∗, v ∈ V, (g(T ))(v) = g(T (v)) = 0.

⇒ ∀g, v, T̂ (v)(g) = g(T (v)) = 0 ⇒ ∀v, T̂ (v) = 0 ⇒ ∀v, T (v) = 0 ⇒ T = 0.

(Here x̂ ∈ V ∗∗ denotes the element as on p.122. The implication T̂ (v) = 0 ⇒ T (v) = 0 follows
from the double duality isomorphism, Theorem 2.26.)



2. (16 pts) Let T : V → W be an isomorphism, where V,W are finite dimensional vector spaces.
If β is a basis for V , prove that T (β) = {T (x) : x ∈ β} is a basis for W .

Let n = dimV . Since T is an isomorphism, dimW = dimV = n. (Lemma, §2.4, p.101.) Since
|β| = n and T is 1-1, we have |T (β)| = n, which is dimW . So it’s enough to show T (β) generates W .
But we know

R(T ) = span(T (β))

(Theorem 2.2) while R(T ) = W as T is onto. Hence W = span(T (β)) and we’re done. �

For a different approach (knowing |T (β)| = n as above), it’s also enough to show that T (β) =
{T (v1), ..., T (vn)} is linearly independent, where β = {v1, ..., vn}. So assume

∑n
i=1 aiT (vi) = 0 with ai

scalars. Then T (
∑n

i=1 aivi) = 0, so
∑n

i=1 aivi ∈ N(T ). Since T is 1-1, this implies
∑n

i=1 aivi = 0. By
linear independence of β, all the ai are zero. Therefore {T (v1), ..., T (vn)} is linearly independent, as
we wanted to show. �

Of course you may just show both the facts that β spans W and that β is linearly independent.
(The two facts are proven along the way in the two approaches above.) That is correct, too.

3. (16 pts) Consider the ordered bases β = {5− 3x, 3− 2x} and γ = {(1, 0), (0, 1)} for R2, and the
linear map T : P1(R)→ R2 given by T (f(x)) = (f(1), f(1)− 2f(0)).

(1) Compute the matrix [T ]γβ.

We have [T ]γβ = ([T (5− 3x)]γ [T (3− 2x)]γ).
Plugging in 5− 3x and 3− 2x in place of f(x), we compute

T (5− 3x) = (2,−8), T (3− 2x) = (1,−5).

Since γ is standard, the γ-coordinates are the standard coordinates. Thus

[T ]γβ =

(
2 1
−8 −5

)
.

(2) Let β′ = {1, x}. Compute the change of coordinate matrix, changing β′-coordinates into
β-coordinates (for the vector space P1(R)).

We need to write elements of β′ as linear combinations of those of β. So we set up equations

1 = a(5− 3x) + b(3− 2x), x = c(5− 3x) + d(3− 2x).

Simplifying the right hand sides,

1 = (5a+ 3b)− (3a+ 2b)x, x = (5c+ 3d)− (3c+ 2d)x.

This yields the system of linear equations

5a+ 3b = 1, 3a+ 2b = 0, 5c+ 3d = 0, 3c+ 2d = −1.

Solving this, we obtain a = 2, b = −3, c = 3, d = −5.

Answer:

(
2 3
−3 −5

)
.



(Another way: One may begin with computing the change of coordinate matrix from β to β′, which

is seen to be

(
5 3
−3 −2

)
(without computation!). Then you may compute the inverse matrix to arrive

at the same answer – that this is true was seen in the lecture; see the sentence above Example 1,
p.112.)

4. Let A ∈Mm×n(F ). (Hint: Consider the left multiplication transformation.)
(1) (6 pts) Show that W = {x ∈ F n : Ax = 0} is a subspace of F n. (Here an element x of F n is

viewed as a length n column vector so that the matrix multiplication Ax makes sense.)

The null space is a subspace of the domain (Theorem 2.1) and the map LA is linear (Theorem 2.15).
Hence W = N(LA) is a subspace of F n. �

(Of course you can also check that W contains 0, and is closed under addition and scalar multipli-
cation.)

(2) (10 pts) Assume that n > m. Prove that dimW ≥ n−m.

By the dimension theorem,
dimW + dimR(LA) = n.

Since R(LA) is a subspace of Fm,

dimR(LA) ≤ dim(Fm) = m.

Therefore
dimW = n− dimR(LA) ≥ n−m. �

5. (16 pts) Let V = R3, and define f1, f2, f3 ∈ V ∗ as follows:

f1(x, y, z) = x− z, f2(x, y, z) = 2x+ y, f3(x, y, z) = −3x+ z.

(1) Prove that β∗ = {f1, f2, f3} is a basis for V ∗.

Since dimV ∗ = dimV = 3, it is enough to show {f1, f2, f3} is linearly independent for showing
{f1, f2, f3} is a basis for V ∗. Suppose

af1 + bf2 + cf3 = 0.

Then
(af1 + bf2 + cf3) (x, y, z) = (a+ 2b− 3c)x+ by + (−a+ c) z = 0, x, y, z ∈ R.

So a + 2b − 3c = 0, b = 0, and −a + c = 0. Solving this system of linear equations, we get
a = b = c = 0. Thus {f1, f2, f3} is linear independent, and a basis. �

(2) Let β = {v1, v2, v3} be the ordered basis for R3 such that β∗ is the dual basis of β. Compute v3.

Let v3 = (a, b, c). By the definition of the dual basis, fi(vj) = δij. In particular (when j = 3)

f1(a, b, c) = 0, f2(a, b, c) = 0, f3(a, b, c) = 1.

so
a− c = 0, 2a+ b = 0, −3a+ c = 1.

Solving the equation, we get a = c = −1/2, b = 1. Answer: v3 =
(
−1

2
, 1,−1

2

)
.


