MATH 185 LECTURE 4 FINAL EXAM SOLUTIONS

FALL 2017

Name:

Exam policies:

e Please write your name on each page.

e Closed book, closed notes, no external resources, individual work.

e Be sure to justify any yes/no answers with computations and /or by appealing to the relevant
theorems. One word answers will not receive full credit.

The usual expectations and policies concerning academic integrity apply.

You may use any theorem proved in class unless the problem states otherwise.

Since there are several slightly different conventions for the “Cayley transform”, write down
the map explicitly whenever you need it in conformal mapping problems.
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(1) (20 points, 5 each) Prove or disprove each of the following statements.
(a) If v is a smooth closed curve in C\ {0}, then

1
/24(12':0
ol

(b) If f, : Q@ — C is a sequence of holomorphic functions which converges to f : Q@ — C
uniformly on each compact subset K C C, then f must be holomorphic.

(c) The half plane {z : Re(z) > Im(z)} is conformally equivalent to the half-strip {z :
Re(z) < 0, 0 < Im(z) < 1}. Either construct a suitable conformal map (do not appeal
to the Riemann mapping theorem) or prove that no such map exists.

(d) The half plane {z : Re(z) > Im(z)} is conformally equivalent to C. (Same remark as
before.)

Solution. (a) True. The function f(z) = Z% has a primitive F(z) = —3% in C\ {0}, so
the integral of f over any closed curve is zero by the fundamental theorem of calculus.
(b) True. It suffices to prove that f is holomorphic on each disc D whose closure D is
contained in ). This follows from Morera’s theorem: if T' C D is an oriented triangle,
then by Cauchy-Goursat and the fact that f,, — f uniformly on T,
/fdz—hm fndz=0.

n—oo

(¢) True. We can map the half strip Q = {z : Re(2) < 0,]Im(2)| < 1} to the half plane
{z : Re(z) > Im(2)} as follows. First apply z — exp(nz) to obtain the upper half disc,
then apply the FLT z +— if; to map the upper half disc to the first quadrant, then
apply z — e=3T422 to obtain the half plane {Re(z) > Im(z)}.

[TODO: picture]

(d) False. If f : C\ {2z : Re(z) > Im(2)} is a conformal equivalence, then i ¢ f(C), so

g9(z) = ﬁ is bounded and entire. By Liouville’s theorem, g is constant and nonzero,

so f(z) — 1 is constant.
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(2) (10 points) Consider a function f : R — C defined by f(0) = ag + a1€? + a2e*? + aze®?,
where 6 € R and a; € C with as # 0. Prove that there exists # € R such that |f(8)| > |ao|.
[Hint: relate f to a suitable function of a complex variable.]

Solution. The problem is equivalent to showing that if F(z) = ag + a1z + a22? + azz® for
z € C, then there exists z* with |z*| = 1 such that |F(z*)| > |ao|, as the required 0 is then
obtained by writing z* = € in polar form.

But since |F(0)| = |ag| and F' is not constant (as az # 0), the maximum modulus principle
implies that sup|.|<y |F(2)| = sup.j=1 [F'(2)| > |ao].
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(3) (10 points)
(a) (5 points) Determine the radius of convergence of the power series

G k
Z k? cos(%) 2F.
k=1
(b) (5 points) Determine the radius of convergence of the power series
< (1) B4
— 1)", wh =
T;) o (z4+1)", where f(z) CEDIEET

Solution. (a) We apply Hadamard’s formula: if R is the radius of convergence of the
power series Y., 2", then R~ = limsup,,_, . |an|"/™.. Since

k o
limsup‘k:2 cos(—w) ]Uk = lim sup K2k = lim sup ezlkgk =1,
k—o0 2 k—o0 k—o0
where in the second inequality we use the fact that |cos(XX)| = 1 for all k even, it

follows that the radius of convergence is 1.
(b) Writing
(z 4 2)(z — 2e'™/3)(z — 2€57/3)

&) = G2

we see that f has an analytic continuation to z = —2 given explicitly by
(z — 26”/3)(2 — 265”/3)

(2 + 2i)(z — 21) ’
which is analytic on every disc D, (1) which does not contain +£2i. On the other hand,
lim,_,19; |F(2)| = 00 so F' has no analytic continuation to any D,(—1) which contains

+2i. Therefore the radius of convergence of the power series, which is also the power
series for F(z), is | +2i + 1| = /5.

F(z) =
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(4) (10 points) Determine the poles, their orders, and the residues of the function
z

eZ
[Hint: Taylor expansion may help with some computations.]

Solution. The function g(z) = e*—1 has zeros at z = 27k for each integer k. As ¢’ (2mik) =
e2™k — 1 is never zero, these zeros are all simple, so for each k we can write g(z) =
(2 — 27k) + (2 — 27k)?ri(2) where 7 (2) is holomorphic and nonvanishing at 2mik.

Each of the zeros of g is an isolated singularity of f. Since in a neighborhood of 0 we

have f(z) = Z+Zf,0(z) = 1+T10(Z), the singularity at 0 is removable.
In a neighborhood of 2wik for nonzero k we can write
z

fz) = (z = 2mik)[1 + (z — 2mik)rg(2)]

So f has a simple pole at 2mik, and
z
2mik) = i — 27 = i = 2mik.
Res(f, 2mik) = lim, (= =2mik) () = M o omibre(e) — 270k
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(5) (10 points) Suppose f is entire and satisfies the bound |f(27%)| < 27 for all positive
integers k.
(a) (2 points) Show that f(0) = 0.
(b) (5 points) Show that in fact f((0) =0 for alln =1,2,3....
(c) (3 points) Prove that f(z) =0 for all z.

Solution. (a) By continuity, f(0) = limy_,s f(27%) = 0.

(b) Suppose f(0) are not all zero. Let N > 0 be the smallest integer such that fV)(0) #
0; thus 0 is a zero of order N, and we can write f(z) = 2™ g(z) where g is holomorphic
and nonvanishing in a neighborhood of 0. Then for all k large enough we have

27 > [f(27h) = 27 Mg )| = 27
for some positive ¢ > 0, so
c< oNk—k?

But since limy_,oo Nk — k? = —o00, the right side of the inequality goes to 0 as k — oo,
which yields a contradiction.
(c) Since f is entire, its Taylor series expansion at any point converges to f(z) for all z.

So f(z)=>", F0) g,

n!
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(6) (10 points) Find a conformal map from the open region between the two circles |z —i| =1
and |z — 4i| = 4 to the unit disc. You may leave your answer as a composition of explicit
“elementary” maps as we have done in class. Please label all relevant geometric quantities
(e.g. x or y intercepts of lines, center and radii of circles) in any sketches.

Solution. First apply the inversion z — % to map the point of tangency to co. Since

11
p—ﬂ2:1¢H42—ﬁ#42+1:1:>L—47—:>:0,
z z

and

1 1
2 i =4 |2 iz iz + 16 =16 = 1~ 4i( 2 - 1) =0,
z z

the image of the circles |z—i| = 1 and |z —4i| = 4 under the map w = 1 satisfy the equations
14+ 2Im(w) =0, 1+ 8Im(w)=0,

respectively. Thus the region between the circles is mapped to the strip

1 1

—5 <Im(w) < -2 }.
{ p <m(w) <=3

The map z — 8?’T(z + %z) takes this strip to the horizontal strip

{0 < Im(z) < 7},
whereupon applying exp(z) followed by the Cayley transform z — j—jri maps this to the unit
disc.

Summing up, the composition fio fso foo f1, where

z—1
Z+i

8mi

112 = 50 ole) = 2 (54 5), fo(e) = explz), falz) =

maps the region between the two circles to the unit disc.
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(7) (10 points) Determine the number of zeros of the function p(z) = 27 — 422 4 152 — 8i in the
annulus {1 < |z| < 2}.

Solution. On the circle |z| = 2, we compare p to the function qi(z) = 2" :

Ip(2) — q1(2)] < | — 42% 4 152 — 8i| < 4(2)* +15(2) + 8 = 54 < |2|7 = 128.
By Rouche’s theorem, p has 7 zeros in the disc |z| < 2.
On |z| = 1, compare p instead to the function ga(z) = 15z:
Ip(2) — q2(2)| < |27 — 422 = 8i| <1+4+8 < 15=152].
Rouche implies that p has 1 zero in |z| < 1, and the above inequality implies that p does not
vanish on |z| = 1.
Consequently p has 6 zeros in the region {1 < |z| < 2}.
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(8) (10 points) Evaluate the integral

/271' de
o 3+cos(f)

Solution. Make the subtitution cos(f) = 1(z +271), z =€, % = df, to write

7 iz

/%de_/ 11dz_2/ 4
o 34 cos(h) |Z|:13+% iz i Jig= 226241

The integrand has simple poles at z4 = %‘/372 = -3+ V8; only 2, = —3+1\/§
the unit disc, and

1 1 1 1
hes(p b o) = SRR I
261" T s Zp — 2 2V/8
Consequently, the integral equals
2 1 s
- ' R <7’ ) = .
A R P V2

lies inside
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(9) (10 points) Let ¢t > 0 be a positive number. Using the residue theorem, evaluate

1 st
lim / 26; d87
R—oo 2mi [, s*+1
where yg = [1 —iR,1 + iR] is the line from 1 — iR to 1 +¢R. [Hint: to decide how to
introduce an additional curve obtain a closed contour, pay attention to where the integrand

is small and where it is large, keeping in mind that ¢ > 0, so that you can estimate the
integral over that curve in the limit as R — 00.]

Solution. Let I'r = vr + CRr be the boundary of the left half disc of radius R centered at
1; thus CR is the semicircular arc defined by |s — 1| = R, Re(s) < 1.

On one hand, we evaluate
1 st
1 / s
2mi Jp,, s2+1

by the residue theorem. The integrand f(s) = % has simple poles at s = *+1i, and
est eit est e—it
1) = 1' = — —17) = 1' = —
Res(f,9) =lim == = 57 Res(/i—0) = lim == i
Therefore
1 eit o e—it
— ds = ———— =sin(t).
ami Jp, 1194 2i sin(?)

On the other hand,
f(s)ds = / f(s)ds+ (s)ds,
I'r TR

t Re(s)eit Im

f
Cr
st = ()| < et is bounded on Cg uniformly in R,

‘ < <Rt 1 - mRe!
< mRe" sup < ,
seCr |IsP =1 — (R=1)2 -1

where the last inequality follows from the observation that |s — 1| = R implies |s| > R — 1.
Consequently the integral over Cr goes to 0 as R — 0o, and we conclude that

and since |e le

est

‘ f(s)ds| < 7R sup
Cr seCr

s24+1

lim = f(s)ds = lim f(s)ds = sin(t).

R—o0 271 R R—o0 T'r



MATH 185 LECTURE 4 FINAL EXAM SOLUTIONS

Extra page for work
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