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(1) Let
1
J(z) = 24+ 822 +16
Determine the poles of f, their orders, and the residue of f at each pole.
Solution. Factoring
1 1

1@ = o~ oot o
we see that f has double poles (i.e. order 2) at 42i.

: . d . ) 9 1
Res(f.20) = liy (= =20%/(2)] = i [~ =55 ] = 5

d 2 1
Res(f, —2i) = lim —[(z +2i)*f(2)] = qul%[—m} = T3
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4 1
/0 4 — sin(2x) d

e2iz _672721
21

(2) Evaluate the integral

Solution. Writing sin(2z) = , and noting that ¢ = €% x € [0, 7] parametrizes

the unit circle, we have

S b A0 _de
/0 4 — sin(2x) dx_/|<|14_4<‘12i§ /|<|1 2—-8i¢—1

2i
The roots of the polynomial ¢? — 2i¢ — 1 are
8i++v—64+4
2

¢ = = (4+ V15)i,

and only (4 — +/15)i is enclosed by the circle |(| = 1. Therefore, applying the residue
theorem (or the Cauchy integral formula) yields

ag ) 1 T

B /|<|1 VBV " Vi) (At V)i Vi
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(3) Suppose f : C — C is holomorphic and satisfies the bound |f(z)| > |z| — 10 for all z € C.
Prove that for each w € C, there exists a sequence {z,}, C C such that lim, . f(z,) = w.
Solution. Suppose this were not the case, so that there exist w € C and § > 0 such

that inf,ec |f(2) — w| > . Then g(z) := m is entire, and |g(z)| < 6! for all 2. Thus
by Liouville’s theorem, g(z) = ¢(0) for all z € C. Since ¢g(0) = f(())%w # 0, it follows that
f(z) = Tlo) + w is constant, which contradicts the hypothesis that lim, o |f(2)| = oo.
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(4) Let Q© C C be open and I' C Q be a cycle homologous to zero in 2. Prove that if f: Q — C
is holomorphic, then

We(2)f(2) = eri/rcf(_ozd( for all 2 € O\ T

Solution. Fix z € Q\T. Let D.(2) C Q\T be a small closed disc centered at z which
does not intersect I'. Then the integrand ¢ f (C) is holomorphic on 2\ {z}, and the cycle
I' — Wr(2)0D; is nullhomologous in Q \ {z}. To see this last claim, note that Wr(¢) =

0 = Wap.(»)(C) if ¢ € C\ {2}, while Wp_y.(»)ap.(2) = Wr(z) — WF(Z)WaDE(z)(Z) = 0.
Therefore, by the general Cauchy integral theorem and the Cauchy integral formula for

discs,
f( f(©)
= d Wr d
0= /rwp(zape()C—Z 4 = /C— ‘- U/@DE(Z)C—Z ‘

— [ L& —omimasco)
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(5) Define f: C\ (—00,0] = C by f(z) = ¥/z := exp(5 Log(z)). Let

Pi(z) =) f(if&)(z —8-8i)", Pyz)=) f(j&)(z + 8+ 8i)"

n=0 n=0
Determine the radius of convergence of P, and P, and compute Pj(—8) 4+ Po(—8).

Solution. Since f is holomorphic on the disc Dg,g;(8 + 8i), the radius of convergence
of P is at least |8 4 8i| = 8/2. On the other hand, f has no analytic extension to any disc
centered at 8 4+ 8 which contains 0, for lim,_,q |f'(2)] = lim,—0 %]z]”/?’ = oo. Thus the
radius of convergence of P; is exactly 8v/2.

For P, argue similarly with fa(z) := exp(%log(_%vo)(z)), z € C\ [0,00), which agrees
with f in a neighborhood of —8 — 8i and is holomorphic on the disc Dy 5(—8 — 8i), but
has no analytic extension to any larger disc. The radius of convergence is therefore 8v/2 as
well.



