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Midterm II Solutions

1. Suppose that f is a differentiable function on [0, 1] such that f ′ never
vanishes and f(0) = 0 and f(1) = 1. Prove that f is strictly increasing.

By the intermediate value theorem for derivatives, f ′ is always posi-
tive or always negative. If were always negative, f would be strictly
decreasing, by the mean value theorem, contradciting the hypothesis.
Hence f ′ is postiive and f is increasing.

2. Let f : [−1, 1] → R be a bounded function which is integrable with
respect to the function α, where α(x) = 0 if x ≤ 0 and α(x) = 1 if
x > 0. Is f necessarily continuous at 0? Proof or counterexample (with
a proof that your example works.)

No, f need not be continuous. For example, consider the function f
such that f(x) = 0 if x < 0 and f(x) = 1 if x ≥ 0. Let P be any
partion of [−1, 1] containing 0, say xi−1 = 0. Then ∆αj = 0 if i 6= j,
but mi = Mi since f is constant on Ii. Hence L(f, P ) = U(f, P ) = 1
and f is integrable.

3. Let X and Y be metric spaces and let f : X → Y be a continuous
function.

(a) Prove that f is uniformly continuous if X is compact, directly
from the definition of compactness.
If ε > 0, then for each x ∈ X there is a δx such that d(f(x), f(x′)) <
ε if d(x′, x) ≤ δx. Since X is compact, there is a finite set of xi

such that the set of balls of the form Bδxi/2 covers X. Let δ be
the minimum of these radii and let x and x′ be two points of X
with d(x, x′) < δ. Then there exists some i such that x ∈ Bδxi/2

Since d(x, x′) < δxi
/2, x′ ∈ Bδxi

. Hence d(f(x, )f(xi)) < ε and
d(f(x′), f(xi)) < ε, so d(f(x), f(x′) < 2ε.

(b) Show by example that f need not be uniformly continuous if X
is not compact, even if Y is bounded. You need not prove your
example works.
The function sin(1/x) for x ∈ [1,∞) is an example.



4. For which values of x ∈ C and s ∈ R does the series
∑

xnn−s converge
absolutely, converge conditionally, or diverge? Explain and justify each
case.

If |x| < 1, then for any s, the series converges absolutely. Indeed, if
x = 0 this is trivial, and if x > 0 the ratio of two successive terms is
|x|(1 + 1/n)s, which approaches |x|. Thus the ratio test applies.

If |x| > 1, the series diverges, as the ratio test above shows.

If |x| = 1 and s ≤ 0, the nth term doesn’t approach zero, so the series
diverges.

If x = 1 and x ∈ (0, 1), Cauchy’s test applies. Namely,
∑

k 2k(2−ks)
becomes a geometric series with ratio 21−s, which diverges if s ≤ 1 and
converges if s > 1, so the same is true of the original series.

Suppose |x| = 1 but x 6= 1. Then the series converges absolutely if
s > 1 by the previous part. It remains only to prove that it converges
(hence conditionally) if s ∈ (0, 1]. This follows from Abel’s theorem.
Namely, the sequence of partial sums of the series

∑
xn is bounded,

and the sequence n−s goes to zero.
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