
Wawrzynek & Weaver
Sp 2018

CS 61C
Great Ideas in Computer ArchitectureFinal Exam

Print your name: ,
(last) (first)

I am aware of the Berkeley Campus Code of Student Conduct and acknowledge that any
academic misconduct on this exam will be reported to the Center for Student Conduct and
may lead to a “F”-grade for the course. I am aware that Nick believes in retribution.

Sign your name:

Print your class account login: cs61c- and SID:

Your TA’s name:

Number of exam of
person to your left:

Number of exam of
person to your right:

You may consult four sheets of notes (each double-sided). You may not consult other notes,
textbooks, etc. Calculators, computers, and other electronic devices are not permitted.
Please write your answers in the spaces provided in the test.

You have 170 minutes. There are 13 questions, of varying credit (180 points total). The
questions are of varying difficulty, so avoid spending too long on any one question. Parts of
the exam will be graded automatically by scanning the bubbles you fill in, so please do
your best to fill them in somewhat completely. Don’t worry—if something goes wrong with
the scanning, you’ll have a chance to correct it during the regrade period.

If you have a question, raise your hand, and when an instructor motions to you,
come to them to ask the question.

Do not turn this page until your instructor tells you to do so.

Question: 1 2 3 4 5 6 7 8 9 10 11 12 13 Total

Points: 15 10 14 14 9 15 18 10 13 18 16 20 8 180

Page 1 of 30

Exam Clarifications

Q1: Part b)ii) Question should say: “How many valid representations can we represent”
d) Do not use the pow() function or include math.h for this problem
Q2(b): new-¿unit price etc should be blue monday-¿unit price etc..
Q5: Non-pipelined circuit should be labeled “Figure 1”, Pipelined circuit should be labeled
“Figure 2”
Q7 (d)(iii) “Overall AMAT of Loop 1 2 only”
Q9: Representation should say 10 significand bits, not 11 bits.
b) Question should read: “What is the smallest positive non-zero number. . . ”
Q10(c) lines 3 and 4 of the RISC-V code should be srli. . . slli. . .
line 13 should be “add t1, t1, ”
Q12: In the problem statement, it says the TLB is 4-way Fully Associative. This should be
JUST Fully Associative (no 4-way).
Q12: First paragraph, 16KB pages should be 16KiB pages
c) M is the least significant bit, not N twice Mystery Sum: 2nd for loop should have bound
NITER not NITIR

Final Exam Page 2 of 30 CS61C – SP 18

Problem 1 [MT1-1] Number Rep (15 points)
Answer the following questions about number representation:

(a) Unsigned Base 4

(i) What is the range that a 4 digit unsigned base 4 number can represent? Write
the bounds in decimal.

Solution: 00004 ∼ 33334 = 010 ∼ 25510

(ii) Convert 10710 to unsigned base 4.

Solution: 10710 = 64 + 16 ∗ 2 + 4 ∗ 2 + 3 = 12234

(b) Signed Base 4

(i) Suppose we wanted to use a bias in order to represent negative numbers in
base4. If we are working with a 4 digit base 4 number, what should we choose
as our bias? (Our bias should create equal amounts of negative and positive
numbers for our range. If this is not possible, select a bias that will result
in 1 more negative number than positive numbers). Express your answer in
decimal.

Solution: 255/2 = 127. So the bias is -128 to favor negative numbers.

(ii) Suppose rather than using a bias notation, we decide to do the following.

For each base 4 number, we will reserve the most significant digit to strictly
be used as a sign bit. A digit value of 1 will indicate a negative number, and
a digit value of 0 will indicate a positive number. Any other values will result
in an invalid number. For instance:

00034 = +3 10034 = −3 20034 = Invalid

How many valid representation can we represent with a 4 digit base 4 number
using this scheme?

Solution: 2*4*4*4 = 128

Final Exam Page 3 of 30 CS61C – SP 18

(c) Given the following function in C:

int shifter(int x, int shift) {
if (x > 0) {

return x >> shift;

}
return -1 * (x >> shift);

}
Given y is a negative integer, and that shifter(y, 2) outputs 4, what is the range
of values of y?

hint: -8 >> 1 = -4

Solution: -16 ∼ −13

(d) Implement the function unsigned int base convert(unsigned int num, unsigned

int base). This function takes in non-negative integers num and base. You are
guaranteed the following:
- base is an integer in the range [2, 10], no need to error check this
- num is comprised of ”digits” with a value between 0 and base - 1.
- All values fit inside an unsigned int.

Your job is to make it so the function returns the decimal value of num in base
base. For example, base convert(30, 4) would return 12, since 304 is 1210. You
may not use additional lines (do not put multiple lines on the same line via ;) but
you may not need all the lines provided. In addition, you may not include <math.h>
or use pow().

Solution:

unsigned int base convert(unsigned int num, unsigned int base) {

unsigned int value = 0, power = 1;

while (num > 0) {
value += (num % 10) * power;

power *= base;

num /= 10;

}
return value;

}

Final Exam Page 4 of 30 CS61C – SP 18

Problem 2 [MT1-2] Allocating an Order (10 points)
You are working on an e-commerce platform. Internally, orders are tracked through a
struct called order t. Your task is to write a function to allocate and initialize a new
order. There’s a catch though! This platform must be robust to errors, so you are
required to return an error value from this function in addition to the newly allocated
order. The possible errors are defined for you as preprocessor directives.

(a) Write new order: Fill in the following code. Keep in mind the following require-
ments:

• You must return BAD ARG if any inputs are invalid. The criteria for valid argu-
ments is:

– Unit price should be positive (no negative prices)

– An order cannot be for more than MAX ORDER items

– Inputs must not cause your function to crash (or execute undefined behav-
ior)

• You must return NO MEM if there are any errors while allocating memory

• The tax rate is always initialized to TAX RATE

• If your function returns OK, then new points to a valid struct that has been
initialized with the provided values.

typedef struct order {
int quantity;

double unit price;

double tax rate;

} order t;

#define OK 0 /* Function executed correctly */

#define NO MEM 1 /* Could not allocate memory for order */

#define BAD ARG 2 /* An invalid argument was given */

#define TAX RATE 1.08

#define MAX ORDER 100

Final Exam Page 5 of 30 CS61C – SP 18

Solution:
/* Allocate and initialize a new order */

int new order(order t ∗∗new, int quantity, double unit price) {
/* Validate Arguments */

if (new == NULL || quantity > MAX ORDER || unit price < 0)

return BAD ARG;

/* Allocate "new" */

*new = malloc(sizeof(order t));

if(*new == NULL) {
return NO MEM;

/* Initialize "new" */

(*new)->unit price = unit price;

(*new)->quantity = quantity;

(*new)->tax rate = TAX RATE;

return OK;

}

(b) Calling new order: How would you use new order() to allocate and initialize
blue monday with a quantity of 10 and a unit price of 3.50 in the example below?

Solution: order t *blue monday;

double total;

ret t ret;

/* Fill in the arguments to new order here */

ret = new order(&blue monday, 10, 3.50);

if (ret == OK) {
printf("Total: %lf\n",

(blue monday->unit price *

blue monday->quantity * blue monday->tax rate));

} else {
printf("Error\n");

}

Final Exam Page 6 of 30 CS61C – SP 18

Problem 3 [MT1-3] RISCY (14 points)
The function RISCY is known to take in two arguments, in a0 and a1.

(a) Fill in the blanks such that the code below executes properly and evokes ecall to
print the value in register s1. You may assume that ecall is a function that takes
in two arguments a0 and a1. When a0 is 1, it prints the value in register a1.

Solution:
RISCY: # Prologue

addi sp, sp, -20

sw s0, 0(sp)

sw s1, 4(sp)

sw ra, 8(sp)

addi s0, x0, 1

add s1, x0, x0

Loop: addi a0, a0, 4

beq a1, s0, Ret

lw t1, 4(a0)

lw t2, 0(a0)

sub t1, t1, t2

bge t1, x0, Cont

neg t1, t1

Cont: blt t1, s1, next

mv s1, t1

next: # print value in s1 for debugging purpose.

sw a0, 12(sp)

sw a1, 16(sp)

addi a0, x0, 1

mv a1, s1

ecall # ecall takes in a0(=1 for print) and a1(=register to

print)

lw a0, 12(sp)

lw a1, 16(sp)

addi s0, s0, 1

j Loop

Ret mv a0, s1

Epilogue

lw s0, 0(sp)

lw s1, 4(sp)

lw ra, 8(sp)

addi sp, sp, 20

jr ra

(b) Convert the RISCV instruction bge t1, x0, Cont into machine code in binary.

Final Exam Page 7 of 30 CS61C – SP 18

Assume mv and neg expands to one instruction. Express your answer in binary in
the fields below.

Solution: 0 000000 00000 00110 101 0100 0 1100011
Binary: 0b00000000000000110101010001100011
Hex: 0x00035463

(c) Translate RISCY into C code. You may or may not need all of the lines provided
below. You can assume you have access to a new print function printint which
takes in one argument, an integer, and prints it out:

void printint(int x);

Solution:
int RISCY(int* a0, int a1) {

int max diff = 0;

for (int i = 1; i < a1; i++) {
int diff = a0[i] - a0[i-1];

if (diff < 0)

diff = - diff;

if (diff >= max diff)

max diff = diff;

printint(max diff);

}

return max diff; }

Final Exam Page 8 of 30 CS61C – SP 18

Problem 4 [MT1-4] CALL (14 points)
Consider the following C code and assembly code:
#include <stdio.h>

int main() {
int i, sum = 0;

for (i = 100; i !=0; i--)

sum = sum + i * i;

printf ("The sum of sq from 100 .. 1 is %d\n", sum);

}

Figure 1: Assembly Code with Address

(a) Please fill in all lines in the above assembly code.

Final Exam Page 9 of 30 CS61C – SP 18

(b) How many pseudo-instructions are in the given assembly code? Count each occur-
rence as one pseudo-instruction.

4

5

6

7

8

9

Solution: Pseudo-instructions are highlighted in the code above.

(c) Create the symbol table and relocation table.

Solution:

Label Address
main 0x00
loop 0x14
check 0x20
str 0x80

Instruction Address Dependency
la a0, str 0x24 str

jal printf 0x28 printf

(d) Replace the labels of PC-relative targets with their immediate values. What is the
offset value of bnez at address 0x20? Write your answer in decimal.

Solution: -12

(e) The assembler takes two passes over the code to resolve PC-Relative target ad-
dresses.

True False

(f) The absolute target addresses can be resolved at the assembler stage.

True False

(g) Interpreted code should run faster than the compiled code.

Final Exam Page 10 of 30 CS61C – SP 18

True False

(h) The compiler still needs to go through the linker stage even if we only have 1 source
file to compile.

True False

Final Exam Page 11 of 30 CS61C – SP 18

Problem 5 [MT2-1] Circuits and Timing (9 points)
In this question, you will be working with a circuit that takes in three 8-bit inputs. For
all parts, assume the delays below:

tclk−to−q = 3ps, tsetup = 4ps, tshifter = 1ps
tadder = 5ps, tmultiplier = 6ps, tsubtracter = 4ps

Furthermore, assume that the inputs A, B, and C take on their new values exactly
at the rising edge of every clock cycle and that all registers are initialized to zero.

Figure 2: Non-pipelined circuit

(a) What is the maximum possible hold time that still ensures the correctness of the
non-pipelined circuit in figure 2? (Select only one)

1ps

3ps

4ps

5ps

7ps

Solution: 5ps (Inputs A/B modify input to register 1 5ps after rising edge)

(b) What is the minimum possible clock period that still ensures the correctness of the
non-pipelined circuit in figure 2? You may assume that for this question that all
flip-flops have a 0ps hold time requirement. (Select only one)

13ps

16ps

20ps

23ps

Solution: 20ps (Input B to Register 2)

Final Exam Page 12 of 30 CS61C – SP 18

Now consider the pipelined version of the circuit (shown below). You will be using
this circuit for the remaining part of the question. All delays remain the same. You
may assume that the hold time is 0ps for the following questions.

Figure 3: Pipelined circuit

(c) What is the minimum clock period of the pipelined circuit in figure 3 that maintains
the circuit’s correctness?

10ps

13ps

15ps

18ps

Solution: 18ps (Register 4/5 to Register 2)

(d) How long does it take to compute the output for a given set of inputs? Assume the
clock period is 11ps.

22ps

27ps

28ps

31ps

42ps

47ps

50ps

other: 30ps or 41 ps

Solution: Technically, 30ps is the time it will take for the values of one set
of inputs to propogate to the output, We also accepted 41ps (3 clock cycles +
clk-to-q + adder)

Final Exam Page 13 of 30 CS61C – SP 18

Problem 6 [M2-2] Read and Write (15 points)
Recall in class we learned that we can optimize our CPU pipeline by having register
writes then reads within the same cycle. Let’s call this implementation write-read.

Consider a new implementation where register reads happen before register writes within
the same cycle. Let’s call this implementation read-write.

Now consider the following RISC-V code and answer the following questions about a
5-stage RISC-V pipeline. Assume no forwarding and no branch prediction.

You are given that there needs to be at least one stall after line 4 for both implementa-
tions.

(a) Consider the code above and the write-read implementation. Which lines should
be followed by a stall to guarantee correctness? (You are given that there needs to
be at least one stall after line 4). For example, if an instruction on line A causes
an instruction on line B to stall, bubble A.

1

2

3

4

5

6

7

8

Solution: line 1, 3, 4 (given), 5

(b) Still considering the write-read implementation, how many stalls are needed before
the instruction on line 5 executes (do not include any stalls that occur after this

Final Exam Page 14 of 30 CS61C – SP 18

point)?

Solution: 3

(c) Now consider the read-write implementation, how many stalls are needed before
the instruction on line 5 executes (do not include any stalls that occur after this
point)?

Solution: 5

(d) Recall that you are given that there needs to be at least one stall after line 4 for
both implementations. What type of hazard requires us to need at least one stall
after line 4?

Structural

Data

Control

(e) For write-read, how many stalls do we need between lines 4 and 5?

1

2

3

4

(f) For read-write, how many nops do we need between lines 4 and 5?

1

2

3

4

(g) If we decide to reorder instructions, which instruction is the best choice to replace
a nop after line 4? Choose the line number of that instruction.

1

2

3

4

5

6

7

None - no reordering needed

Final Exam Page 15 of 30 CS61C – SP 18

Problem 7 [M2-3] $$$ (18 points)
Assume we have a single L1 data cache having the following characteristics:

- 4 KiB cache size
- 16 byte blocks
- Direct Mapped

Assume the following piece of code is run in a 32-bit address space with sizeof(int)

= 4 :

#define SIZE 8192 // 213

int ARRAY[SIZE]; // note: extra aligned: ((int) ARRAY) % 64 == 0

int main() {
ARRAY[0] = ARRAY[4] + ARRAY[8]; // This happens before Loop 1

for (int i = 0; i < SIZE - 16; i += 4) { // Loop 1

ARRAY[i] += ARRAY[i + 4] + ARRAY[i + 8] + ARRAY[i + 12];

}

for (int i = SIZE - 1; i >= 0; i -= 32) { // Loop 2

ARRAY[i] += 10;

}
}

(a) Calculate the number of tag, index, and offset bits for this L1 cache.

Solution: Tag: 20 Index: 8 Offset: 4

(b) Now, what is the hit rate for Loop 1 in the data cache? Assume that we start with
a cold cache from the start of main().

Solution: 4/5
We loaded in the first three block before Loop 1. Now, our step size is 4 ints or
16 bytes, meaning we get 1 step per block. Each step, we read the array four
times and write into it once, resulting in 5 accesses, however, each of the reads
is in a different block, resulting in 4 distinct blocks being used per step. The
first three are brought in already, and we miss on the fourth read. The write is
in the same block as the first read, so we have a 4/5 hit rate.

(c) What is the hit rate for Loop 2 given that the cache is NOT reset after Loop 1?

Final Exam Page 16 of 30 CS61C – SP 18

Solution: 9/16
We know that our cache is 4KiB = 212 B large and our array is 213 ∗ 22 B
large, meaning that at the end of Loop 1, because we touched every single
block, the last 1/8th of the array is in our cache. Now, for the first 1/8th of
Loop 2, we reuse the blocks already in our cache, meaning we have a 100% hit
rate for 1/8th, but 50% hit rate for the rest of the 7/8th accesses, 50% since
there are two accesses per step into the same block. Thus, we get a hit rate of
1/8 + 1/2 ∗ 7/8 = 9/16.

(d) Assume that accessing memory takes 100 cycles, accessing data that is in the cache
takes 5 cycles, Also assume for this part that Loop 1’s hit rate is 60% and Loop
2’s hit rate is 75%, which may or may not be the correct hit rates. What is the
average memory access time (AMAT) in cycles for (Please reduce fractions):

(i) Loop 1:

Solution: 45 cycles. AMAT = HT + MR * MP = 5 + 40% * 100 = 45

(ii) Loop 2:

Solution: 30 cycles. AMAT = HT + MR * MP = 5 + 25% * 100 = 30

(iii) Overall AMAT of Loop 1 2 (an expression of REDUCED fractions is alright.
You may use “T1” as the Loop 1 AMAT and “T2” as the Loop 2 AMAT in
your calculation of this value):

Solution: 20/21 * T1 + 1/21 * T2
The first loop has 5 accesses per step and 213/4 total steps. The second
loop has 2 accesses per step and 213/32 total steps. This gets that the first
loop does 5 ∗ 211 accesses while the second loop does 2 ∗ 28 or 29 accesses.
The weighted average of AMAT then becomes: T1∗ (5∗211)/(5∗211 +29)+
T2 ∗ (29)/(5 ∗ 211 + 29) = T1 ∗ (5 ∗ 22)/(5 ∗ 22 + 1) + T2 ∗ 1/(5 ∗ 22 + 1) =
T1 ∗ 20/21 + T2 ∗ 1/21.

Now we add in a L2 cache with the following characteristics:
- 16 KiB cache size
- 16 byte blocks
- Fully Associative

Final Exam Page 17 of 30 CS61C – SP 18

We re-run main() with cold L1 and L2 caches.

(e) What would be the local MISS rate of the L2 cache for Loop 1?

Solution: 100%.
We get no hits because we only access L2 if we miss in L1, but after the first
miss in L1 per step, we never access L2 since we hit in L1 for the rest of the
accesses, resulting in one miss and no hits per step.

(f) What would be the local MISS rate of the L2 cache for Loop 2? Assume the caches
are NOT reset after Loop 1. Also, don’t take into account the miss rate for Loop
1 when calculating Loop 2.

Solution: 4/7.
Our L2 cache is 16KiB = 214 B while our array is 215 B, which means that at
the end of Loop 1, starting from the end of the array, we have half of it. The
first 1/8th is already in L1, so we don’t access L2, but for the next 7/8th we
use L2. L2 has 3/8th the cache, so (3/8)/(7/8) = 3/7 HR = 4/7 Miss Rate.

Final Exam Page 18 of 30 CS61C – SP 18

Problem 8 [M2-4] Datapath (10 points)
Recall the standard 5-stage, single cycle datapath contains stages for Instruction Fetch,
Decode, Execute (ALU), Memory, and Write-back. Datapath designers are interested in
reducing the phases necessary for execution such that instead of accessing both the Ex-
ecute (ALU) phase and the Memory phase, instructions access either one or the other,
but not both. This would create a 4-stage, single cycle datapath with the following
stages: Instruction Fetch, Decode, Execute OR Memory, and Write-back.

Instr Fetch Instr Decode Execute (ALU) Memory Write-back
100ps 150ps 200ps 350ps 150ps

(a) Given the table above and the described datapath above, what is the time it takes
for a single instruction that utilizes all stages to execute on the typical 5-stage,
single cycle datapath?

Solution: 100 + 150 + 200 + 350 + 150 = 950ps

(b) What is the time it takes for a single instruction that utilizes all stages to execute
on the new 4-stage, single cycle datapath?

Solution: 100 + 150 + MAX(200, 350) + 150 = 750ps

(c) If the designers go ahead with this modification, which instructions will NOT func-
tion correctly? Why? Please limit your answer to two sentences or less.

Solution: Load and store instructions which use a non-zero offset will not
function correctly because they require BOTH the ALU and Memory phase.
The address must first be calculated before memory can be accessed.

(d) Propose a program-level modification that will fix the issue. Do NOT propose a
modification to the datapath. Please describe your modification in two sentences
or less.

Solution: Instead of allowing load/store instructions with non-zero offsets to
appear in code, the compiler (or the programmer) can expand these instructions
into a load/store + addi pair. This way, the address is calculated by a separate
instruction before the memory access takes place.

Final Exam Page 19 of 30 CS61C – SP 18

Problem 9 [F-1] Floating Point (13 points)
IEEE 754-2008 introduces half precision, which is a binary floating-point representation
that uses 16 bits: 1 sign bit, 5 exponent bits (with a bias of 15) and 10 significand bits.
This format uses the same rules for special numbers that IEEE754 uses. Considering
this half-precision floating point format, answer the following questions:

(a) For 16-bit half-precision floating point, how many different valid representations
are there for NaN?

Solution: 211 − 2

(b) What is the smallest positive non-zero number it can represent? You can leave your
answer as an expression.

Solution: bias = 25−1 − 1 = 24 − 1 = 15
Binary representation is: 0 00000 0000000001
= 2−14 ∗ 2−10 = 2−24

(c) What is the largest non-infinite number it can represent? You can leave your answer
as an expression.

Solution: Binary representation is: 0 11110 1111111111
= 216 − 25 = 65504

(d) How many floating point numbers are in the interval [1, 2) (including 1 but exclud-
ing 2)?

Solution: 210

0b0 01111 0000000000 = 1
0b0 10000 0000000000 = 2
There are 210 numbers within the interval.

Final Exam Page 20 of 30 CS61C – SP 18

Problem 10 [F-2] All Kinds of Parallelism (18 points)
SIMD within a Register (SWAR) in RISCV: You are planning to obfuscate some
messages before they get released to the world. Instead of doing it properly (via en-
cryption), you want a simpler implementation. Your first idea is to add 1 to each
character, e.g. turning “aabb” into “bbcc”? If we apply this method to “a quick brown
fox jumps over the lazy dog”, it becomes “b!rvjdl!cspxo!gpy!kvnqt!pwfs!uif!mb{z!eph”!
It looks promising. And the implementation is plain and simple (both in C and RISCV):

void obfuscate(char* d, size t n) {
for (int i = 0; i < n; i++) {

d[i] += 1;

}
}

obfuscate:

beqz a1, END

add t0, x0, x0

LOOP:

lb t1, 0(a0)

addi t1, t1, 1

sb t1, 0(a0)

addi t0, t0, 1

addi a0, a0, 1

blt t0, a1, LOOP

END:

ret

Things look great so far. Then you realize that you learned all kinds of crazy techniques
to speedup a function in CS61C and this looks very similar to the many SIMD examples
you have seen. Although RISCV does have SIMD instructions via a vector extension set,
we want to implement our own version of RISCV SIMD. Our idea is to pack multiple
characters into a single 32-bit integer. In fact, we do not even need to load and pack the
data: four characters have the same width of an integer. Assume d is word aligned and
that all input characters in the message are less than 254. Also assume n is the number
of characters in the message and that register a0 holds the value of d and register a1

holds the value of n.

(a) Complete the following implementation for a vectorized version of obfuscate:

Solution:
void obfuscate vec(char* d, size t n) {

for (int i = 0; i < n / 4 * 4; i += 4) {
((int) (d + i)) += INC;

}
/* handle tail cases */

for (int i = n / 4 * 4; i < n; i++) {
d[i] += 1;

}
}

(b) Refer to the constant INC in the code above. What should the value of INC be such
that obfuscate vec works correctly? Write your answer in hexadecimal.

Final Exam Page 21 of 30 CS61C – SP 18

Solution: 0x01010101

(c) Loop Unrolling: You can optimize this procedure further! Loop unrolling is
supposed to reduce the number of branch instructions. Complete the following:

Solution: void obfuscate vec unroll(char*

d, size t n) {
for (int i = 0; i < n / 8 * 8; i += 8)

{
((int) (d + i)) += INC;

((int) (d + i + 4)) += INC;

}

/* handle tail cases */

for (int i = n / 8 * 8; i < n; i++) {
d[i] += 1;

}
}

Solution:
obfuscate vec unrolled:

beqz a1, END

add t2, a1, x0

srli t2, t2, 3

slli t2, t2, 3

beqz t2, TAIL

add t0, x0, x0

li t3, INC

LOOP VEC:

lw t1, 0(a0)

add t1, t1, t3

sw t1, 0(a0)

addi a0, a0, 4

lw t1, 0(a0)

add t1, t1, t3

sw t1, 0(a0)

addi a0, a0, 4

addi t0, t0, 8

blt t0, t2, LOOP VEC

TAIL:

add t0, t2, x0

LOOP TAIL:

lbu t1, 0(a0)

addi t1, t1, 1

sb t1, 0(a0)

addi t0, t0, 1

addi a0, a0, 1

blt t0, a1, LOOP TAIL

END:

ret

(d) Given a message of length n characters, how many instructions are needed after
loop unrolling? Express your answer in terms of n, such as 3n + 4. In addition,
what is the speed up when n is approaching infinity in comparison to the original
non-optimized function obfuscate? Count pseudo-instructions as 1 instruction.
You do not need to simplify your expressions.

of Instructions: (7 + (n/8) ∗ 10 + 1 + (n%8) ∗ 6 + 1) Speedup: 7.5X

(e) You decide to further improve the code with thread parallelism using 4 threads!
Fill in proper OpenMP directive to the blank below:

Final Exam Page 22 of 30 CS61C – SP 18

Solution:
void obfuscate vec unroll(char* d, size t n) {

#pragma omp parallel for

for (int i = 0; i < n/8*8; i+=8) {
((int) (d + i)) += INC;

((int) (d + i + 4)) += INC;

}
handle tail cases

for (int i = n/8*8; i < n; i++) {
d[i] += 1;

}
}

Someone tells you to add #pragma omp parallel at Location A in the code above.
If you do this, which statement is true about the second for loop (the tail case)?

Always Incorrect

Sometimes Correct

Always Correct, slower than serial

Always Correct, faster than serial

(f) Denote the speedup when n is approaching infinity of obfuscate vec unroll from
part (d) as “S”. Suppose the overhead of running OpenMP is negligible in compar-
ison to the rest of the code, and we can run four threads, what is the maximum
speed up compared to the original non optimized function obfuscate?

Solution: 4 ∗ S

(g) WSC and Amdahl’s Law: The above program now runs in the cloud with many
machines. obfuscation vec unroll is 90% of all execution (AFTER applying
SWAR, unrolling, and OpenMP), and obfuscation vec unroll can be parallelized
across machines.

(i) If we run obfuscate vec unroll on a cluster of 16 machines, what is the
speedup? You may leave your answer as an expression.

Solution: 1/(0.1 + 0.9/16) = 6.4

(ii) What is the maximum possible speedup we can achieve if we have an unlimited
number of machines?

Final Exam Page 23 of 30 CS61C – SP 18

Solution: 1/0.1 = 10.0

Final Exam Page 24 of 30 CS61C – SP 18

Problem 11 [F-3] Pikachu Learns Spark (16 points)
We are given the entire dataset of every Pokémon and we want to find the mean of all
Pokémon id numbers by type. Some Pokémon have dual types so that Pokémon’s id
number will contribute to the average total of both types. For example, Kyurem is both a
dragon and an ice type so his id number will contribute to both type’s sum when consid-
ering the average. Fill in the blanks for the Python code below. Use the following
Spark Python functions when necessary: map, flatMap, reduce, reduceByKey.

Sample input (pokemon id, pokemon name, pokemon types):
646 Kyurem Dragon Ice

25 Pikachu Electric

257 Blaziken Fire Fighting

Sample output (Type, Number):
(Dragon, 587)

(Electric, 412)

Solution: def parseLine(line):

tokens = line.split(" ")

types = tokens[2:]

results = []

for type in types:

results.append((type, (tokens[0], 1))

return results

def reduceFunc(v1, v2):

return (v1[0] + v2[0], v1[1] + v2[1])

def average(k, v):

return (k, v[0] / v[1])

pokemonData = sc.parallelize(pokemon)

out = pokemonData.flatMap(parseLine)

.reduceByKey(reduceFunc)

.map(average)

Final Exam Page 25 of 30 CS61C – SP 18

Problem 12 [F-4] Virtual Memory (20 points)
Demand paging (storing part of a process’ memory on disk) is yet another example
of caching in computer systems. If we think of main memory as a cache for disk, what
are the properties of this cache? Assume a machine with 64 bit addresses, 16KB pages,
a 4-way fully associative TLB, and 8B words.

(a) Associativity?

Direct Mapped

N-Way Set Associative

Fully Associative

(b) Block size:

Solution: 16KB

(c) Address layout. Your answer should be of the form [N:M] where N is the bit number
of the most significant bit of the field and N is the bit number of the least significant
bit of the field. For example, if the tag consists of the first 4 least-significant bits,
you should write [3:0]. If the field is not applicable to paging, you may write “N/A”.

Solution: Tag bits:[63:14] Index bits:N/A Offset bits:[13:0]

(d) Write policy?

Write Through Write Back

(e) Allocation policy?

Write Allocate Write No Allocate

TLB Reach. We have written a strange and mysterious summation function. It uses
a mystery constant called T. You may assume that T is defined (but you don’t know
what to) and that arr will always have enough elements (the function will never access
outside of arr). The function is run on a machine with the following properties:

• 64 bit addresses

• 4KiB pages

• 4 byte words

• 4GiB of main memory

• 1MiB fully-associative cache with 64 byte blocks

• 2 entry fully associative TLB

Final Exam Page 26 of 30 CS61C – SP 18

• 4 level page table with 8 byte entries

• The OS uses LRU when paging to disk

#define NITER 10*1024*1024

#define T ??? // see below

int MysterySum(int *arr) {
int i = 0;

int sum = 0;

for(; i < NITER / 2; i++)

int p = (i % T)*4096;

int b = i % 4096;

sum += arr[p + b];

}

/* Timer starts here*/

for(; i < NITIR; i++) {
int p = (i % T)*4096;

int b = i % 4096;

sum += arr[p + b];

}
/* Timer ends here */

return sum;

}

(f) Performance of T
Rank the the following values of T based on how fast the second loop only executes
(assuming the first loop has already ran). You should state whether pairs of values
are < or =. For example, you should write 1 < 2 if T=1 causes the second loop to
run strictly slower than T=2. Likewise, you could write 8=2 if 8 is about as fast
as 2.
T = 1, 2, 3, 4

Solution: 3 = 4 < 1 = 2

(g) System Design
What system parameter would you change in order to maximize system performance
for T=27. You must mark only one of the following (pick the one with the largest
performance gain):

Final Exam Page 27 of 30 CS61C – SP 18

Address Size

Page Size

Word Size

Main Memory Size

Cache Capacity

Cache Block Size

TLB Capacity

TLB Associativity

Page Table Depth

Page Table Entry Size

(h) Page Table Walk
Given the list of virtual addresses, find the corresponding physical addresses. For
each address, you must also note whether the access was a TLB hit, Page Table
hit, or Page Fault (by writing yes/no for each). If the access is a page fault, you
should leave the PPN and PA fields blank. Do not add this entry to the TLB.
Our virtual memory space has 16-byte pages and maintains a fully-associative, two-
entry TLB with LRU replacement. The page table system is hierarchical and has
two levels. The two most-significant bits of the VPN index the L1 table, and the
two least-significant bits of the VPN index the L2 table.

Solution:

Final Exam Page 28 of 30 CS61C – SP 18

Problem 13 [F-5] Potpourri (8 points)
Answer the following questions

(a) You have a computer that, well, stinks. It goes down on average 6 times a day and
it takes 1 hour to get working again. What is the current system’s availability?

0.5

0.6

0.7

0.8

Solution: Availability = MTTF/(MTTF+MTTR) = 4/(4+1) = 4/5 = 0.8

(b) Assume you have the computer from part (a) when the manufacturer offers you a
deal. a: A new computer that only crashes 4 times per day or b: support that can
reduce the time to fix to 6 minutes. Which one should you choose?

a b

Solution: Availability(a) = 6/(6+1) = 6/7
Availability(b) = 4/(4+.1) = 4/4.1
Availability(b) > Availability(a)

(c) You have a processor that has a clock rate of 2GHz, a time to poll of 200 cycles for
I/O, and you need to poll I/O at 100 Hz. If you use polling, what is the percentage
of time you will need to spend polling?

1%

0.1%

0.01%

0.001%

Solution: Polling at 100Hz means 100 times per second. Each time you poll it
costs 200 cycles. Thus, you spend 100 ∗ 200 = 20, 000 cycles polling per second.
This is 20, 000/(2 ∗ 109) = 0.001%

(d) If the data comes in very infrequently do you want to use interrupts or polling?
Why?

interrupts polling

Solution: Interrupts because we would be wasting a lot of cycles polling for
infrequent data.

Final Exam Page 29 of 30 CS61C – SP 18

Figure 4: Good Luck And Don’t F*** It Up

Final Exam Page 30 of 30 CS61C – SP 18

