University of California, Berkeley - College of Engineering

Department of Electrical Engineering and Computer Sciences

Summer 2015 Instructor: Sagar Karandikar 2015-08-13

After the exam, indicate on the line above where you fall in the emotion spectrum between “sad” & “smiley’...

Last Name | ANSWER KEY

First Name

Student ID Number

Login | cs6lc-

The name of your SECTION TA (please circle) Derek | Harrison | Jeffrey | Nathaniel | Rebecca

Name of the person to your Left

Name of the person to your Right

All the work is my own. | had no prior knowledge of the exam
contents nor will | share the contents with others in CS61C

who have not taken it yet. (please sign)

Instructions (Read Me!)

This exam contains 16 numbered pages including the cover page. The back of each page is
blank and can be used for scratch-work but will not be looked at for grading. (i.e. the
sides of pages without the printed “SID: ” header will not even be scanned into
Gradescope).

Please turn off all cell phones, smartwatches, and other mobile devices. Remove all hats &
headphones. Place your backpacks, laptops and jackets under your seat.

You have 80 minutes to complete this exam. The exam is closed book; you may not use any
computers, phones, wearable devices, or calculators. You may use one page (US Letter, front
and back) of handwritten notes in addition to the provided green sheet.

There may be partial credit for incomplete answers; write as much of the solution as you can.
We will deduct points if your solution is far more complicated than necessary. When we
provide a blank, please fit your answer within the space provided. “IEC format” refers to the
mebi, tebi, etc prefixes.

M1-1 | M1-2 | M1-3 | M2-1 | M2-2 | M2-3 | F1 F2 F3 | Total

Points
Possible

11 20 18 20 15 19 12 20 17 152

SID:

M1-1) Number Representation (11 pts)

Part 1: Quick conversions:

A -
a) What is OXFFFFFFFC in decimal when read as an unsigned value? 27324

OxFFFFFFFC is 0b1111 1111 1111 1111 1111 1111 1111 1100, which is the sum of all powers of 2 between 2/2 and 2/31, inclusive, which is the same as (2/32 - 1) - 3. This is
because if we're interpreting a binary string of all 1's of length N as an unsigned number, its value is 2AN - 1. Below is an inductive proof:

Inductive Hypothesis: For some N >= 1, an unsigned binary string of all 1's of length N has value 2AN - 1.

Base case: N = 1, (binary string = 0b1) => value is 1.

Inductive Step: Denote the value of the string of all 1s of length X "S_X".

S N=S_{N-1}*2+1=(2A(N-1)-1)*2+1=2AN-1

b) Encode the decimal value -10 in 32 bits of two’s complement. Give your answer in hex. OxFFFFEFF6

First we encode +10 as a two's complement number. +10 = 0b 0000 0000 1010
Then, we use the two's complement negation trick (flip all bits and add 1) to get -10.
~(+10) =0b 1111 1111 0101

-10 =~(+10) + 1 =0b 1111 1111 0110 = OxFFFFFFF6

Part 2: We have a new number representation called Balanced Ternary that uses “Signed Digit
Representation” in ternary trits. Each digit can individually represent a positive, zero or a negative
value. The n™ digit (zero-indexed from the right) gets multiplied by 3" — just like in regular ternary.
Instead of having the three states represent 0, 1 and 2, they represent for -1, 0, and 1. We will use +
to denote +1, 0 to denote 0, and — to denote -1.

Convert the following Balanced Ternary numbers to decimal.

c) 000+ ¢) 000+ means (+1) * 3A0 = 1
1 d) 00+- means (+1) * 3A1 + (-1) *3M0=3-1=2
e) +--0 means (+1) * 3A3 + (-1) * 3A2 + (-1) *3A1 =27-9-3 =15
d) 00+-
2
e) +--0

27 - 9 - 3 =15

f) How many ways can you represent the decimal number 47 Write all of them out.
one+—0061%

This answer should read "One: 00++".

What do you get (expressed in balanced ternary) when you add the following numbers vertically?
(Hint: use the result from (g)-(i) to do (j))

g) + h) 0+ i) 0- i) +4+0+ - -
- 0+ 0- - +0++ -
0 + - -+ + - + - - +
g-j) Use the normal addition algorithm. Note that add("+", "+") = "-" with a carry-over of

"+" to the next place, because 1 + 1 =2 =3 -1 ="+-", Similarly, add("-", "-") = "+" with a
carry-over of "-" to the next place, because -1 +-1=-2=-3+1 ="-+"

2/18

SID:

M1-2) C Pointers, Arrays and Strings (20 pts)
a) Fill in the blanks below for the function tokenize which splits up a string into proper C strings
whenever it encounters a specified delimiter (a single character).

Example:

char * string = “Summer*time”;

printf (“%s”, tokenize(string, ‘*’)[0]); // prints: Summer

printf (#“%s”, tokenize(string, ‘*’)[1]); // prints: time

Inputs:

char * str - a NULL terminated character array

char delimiter - a character to split on

- You may assume that the delimiter appears at least once in the input str and the first/last
character in the input string are not the delimiter.

Outputs:

An array of strings split by the provided token (pointers and string data on the heap). See the
example above. The delimiter should never appear in an output string and your output should never
contain strings of length zero.

Requirements:

You may use one additional malloc call beyond the one provided in the skeleton.

Assume that you have access to the functions:
int count_occurences (char * str, char token); // Counts occurrences of a token in a string
char * strcpy (char * destination, char * source); // copies string source to buffer dest

char ** tokenize(char * str, char token) {
char * copy = malloc(sizeof (char) * strlen(str) + 1)i
strcpy (copy, str);

char ** gtring array = malloc(sizeof (char*) *count_occurences (str, token)) ;
int index = 0 ;
string arrayl[index] = copy :
while(_ *copy 1= 7\0’) {
if (*copy == token && * (copy+l) != token) {

*copy = ‘\0’;

index += 1;

string arrayl[index] = ++copy;

} else if (*copy == token) {

* (copy++) = ‘\0';

} else { copy++; }

}

return string array;

} See next page for detailed (and
corrected) answexr:s

Essentially, what this code does is copy the input string to the heap, and then replace
the delimiter token with null terminating characters, all the while adding pointers
(which point to the first character following those replaced tokens) to an array. Note
- Original solution had an error on the line which allocates space for
string_array.

char ** tokenize(char * str, char token) { // we want to break the input character pointer into several character pointers and return them.
Recall that in C, "string", simply means a null-character terminated character pointer.
char * copy = malloc(sizeof(char) * strlen(str) + 1); // 1 comes from our need to allocate space for the null terminating character,
which strlen does not count as part of the length of the string
strcpy(copy, str);
char ** string_array = malloc(sizeof(char*)*(count_occurences(str, token) + 1)); // if there are n delimiters, we want to split the
string into n+1 parts.
int index = 0;
string_array[index] = copy; // the first string starts where the input string begins, because we assume that the first character in the
input string is not the delimiter
while(*copy = \0’){ // loop until we hit the null terminator
if (*copy == token && *(copy+1) != token){ //if we have two delimiting characters in a row we want to go to the next
case
*copy = \0’;
index +=1;
string_array[index] = ++copy; // recall that ++copy increments pointer and then returns the pointer value
} else if (*copy == token){
*(copy++) = \0’; // recall that copy++ returns the original pointer value and then increments pointer value
} else {copy++;}
}

return string_array;

SID:

M1-2) C Pointers, Arrays and Strings (continued)

b) What does the following program print if the starting address of x is 1000, and the starting
address of array arr is 2000,? All addresses are byte-addressed.

#include <stdio.h>
int main() {
int *p, x;
int arr[5] = {1000, 2000, 3000, 4000, 50003};

int *p2;
p = NULL;
x = 5000;

p = &x; //p = 1000, *p = p[0] = 5000

printf (#“%d %d %u %u\n”, X, *p, p, &X);

p2 = arr; //p2 = 2000

* (p2+1) = *p; //p2[1] = 5000

*p = *p2 + *(p2+2); //*p = x = p2[0] + p2[2] = arr[0] + arr[2] = 4000
p2++; //p2 = arr + 1, so p2 = 2000 + sizeof (int) = 2004

printf (“%d %d %d %u\n”, x, *p, *p2, p2);

return 0;

5000 5000 1000 1000

4000 4000 5000 2004

4/18

SID:

M1-3) What’s happening? It’s a MIPStery! (18 pts)
The code below does something funky. You can assume that we only need to run this code on a
“‘bare” system — one with no address translation (i.e. no Paging or Base and Bounds).
0x000004 main: 1i ¢$a0, 1

0x000008 jal mystery # C= (A)

0x00000c addu $a0, $0, $vO

0x000010 jal mystery # C= (B)

0x000014 addu $a0, $0, $vO

0x000018 jal mystery # C= (C)

0x00001c addu $a0, $0, $vO

0x000020 jal mystery # C= (D)

0x800004 mystery: lui $t0, Oxffff Hused to keep top 16 bits from inst.
0x800008 lu% $t2, %Hi(mystery)$t2 - address of mystery

0x80000c ori $t2, %Lo (mystery)

0x800010 addiu $tl1l, $0, 0 H#the instruction at this address is modified
0x800014 andi $a0, $a0, Oxffff #Honly using bottom 16 bits of $al
0x800018 add $v0, $a0, $tl Hdespite appearances, tl is not always 0
0x80001c 1w $t3, 12($t2)#Hload the fourth instruction past ‘mystery’
0x800020 and $t3, $t3, $tOH#Hkeep top 16 bits of instr(not imm. bits)
0x800024 or $t3, $t3, $alOffinstruction’s imm. is now the (n-1)th fibnumber
0x800028 SW $t3, 12($t2)Hstore modified inst. back to 0x80000c
0x80002¢ jr $ra

a) What is the value in $v0 after returning from the function call in the line marked:

A 1 (=) I C 3 o) ___ 5
b) What does the function mystery return if we follow the pattern in main above, calling mystery N
times? (You should use N in your answer.)

N-th Fibonacci number on the N-th call. This is achieved by modifying instruction at
0x80000c during the n-th call to store n-1th fibonacci number in its immediate bits

c) Write TAL MIPS code to “reset” the function mystery such that aftera jal reset_mystery line,
the next call to mystery with $a0 = 1 behaves like the function call in (A). You might not need all of
the lines provided. In your answer, you can use the %Hi and %Lo directives used above.
reset_mystery:

lui $t0, Oxffff

Meant to zero out bottom 16
bits of the instruction at
0x80000c while keeping top
16 bits. Technically, we
should ensure that $t0 is
initially 0, by having “add
$t0 $0 $0” be the first line
after reset_mystervy:

5/18

lui $t2, %Hi (mystery)

ori $t2, %Lo(mystery)

1w $t3, 12($t2)

and $t2, $t2, $t0

sw $t2, 12($t2)

jr $ra

SID:

M2-1) SDS, Gates, Timing, FSM (20 pts)
a) Assume that the clock period is 15ns, the input comes 5ns after each positive clock edge, the
register has no hold and setup times but has a clock-to-Q delay of 5ns, and gates have a 5 ns delay
(with or without bubbles in the input).

Qutput
Input J—-H—Eg- P

e

@ clock

Clock cycle is 15, so distance
between vertical lines is 5 ns..
Reg Out is updated at every

rising edge, but is delayed 5ns
due to CLK-To-Q delay. 1 2 3 4 5

To see what the Out is, look at ~Input
the vertical column of the logical ' I I I I I
AND funcion applied to the

not’d input with the register
output.

Input

Note that the AND gate has a Reg Out
delay of 5ns, so it takes 5 ns for
Output to be updated given a And Out

change in Input or Reg Out

What is the value of the output signal at the numbered markers? Write X for unknown/undefined.
We have provided space for you to sketch out signals, but we will not grade any sketches.

. x 20 3)__ 1 4)_ 1 5_ 1

b) Write a Boolean expression for Out in terms of inputs A, B and C in the circuit below and simplify
the expression so it can be built using only 4 basic gates without bubbles. Basic gates are: OR gates,

AND gates, NOT gates.
From the final expression we

A can see that we need 2 AND

B gates, 1 OR gate, and 1 NOT
Out sate

C Demorgan’s applied twice, then once more, then cancel NOT

~((~A + ~B) (A + ~C)) = ~(~(AB) ~(~AC)) = AB + ~AC

6/18

SID:

M2-1) SDS, Gates, Timing, FSM (continued)

Recall: the critical path delay is the longest
c) The circuit below has the following timing parameters: period of time which data has to travel in a

Clock period: 20ns . . .
XOR gate delay: 5ns single clock period, meaning the longest

OR gate delay: 5ns path between a pair of inputs, state
Inverter delay: 4ns elements (registers), and/or outputs.

Register setup time: 2ns
Input comes 1ns after every clock edge

i) What is the maximum possible clk-to-Q delay for the registers?

We're asked to find the an upper bound on the CLK-to-Q delay, which means we have to find the length of the critical path
for some general CLK-to-Q delay, and then take the difference between the clock period and the critical path delay without
the CLK-to-Q delay to find the maximum CLK-to-Q delay.

In this case, the path from register B to register A through the inverter is the critical path. Starting from B, we incur the CLK-
to-Q delay (X), the NOT/INV delay (4 ns), the OR delay (5 ns), and the setup time at A (2 ns). X = 20 -4-5-2=4

Note: The hold time doesn't matter for this calculation, because it overlaps with the CLK-to-Q and in any case, does not
impact the upper bound on the CLK-to-Q (it might impact the lower bound on the CLK-to-Q).

Register A: 20 - 5 (XOR)
Register B: 20 - 4 (inv)
Both registers: min(8,4)

5 (OR) - 2 (setup A) = 8ns
5 (XOR) - 5 (OR) - 2 (setup A) = 4ns
4 ns

i) Assuming a clk-to-Q delay of 3ns, what is the maximum possible hold time for the registers?
Register A: 3 (clk-Q B) + 4 (inv) + 5 (OR) = 12ns

Register B: 1 (input) + 5 (XOR) = 6ns

Both registers: min(12,6) = 6 ns

Now we're trying to set an upper bound on the hold time such that we don't incur a hold time
violation. Recall that a hold time violation occurs when new data arrives at a register before the
hold time has passed since the last rising edge of the clock. So, we're concerned with the shortest
path data travels before it reaches a register. In this case, the shortest path is from the input to
register B. Data arrives at the input wire 1 ns after the rising edge of the clock, then travels
through the XOR gate (5 ns) to register B. By the time 6ns has passed, the hold time must be
over, otherwise there is a hold time violation.

7/18

SID:

M2-1) SDS, Gates, Timing, FSM (continued)
d) Using as few states as possible, draw an FSM diagram that satisfies the following:
e We are reading a buffer bit-by-bit containing data surrounded by a "header" and a "footer".
¢ The header is defined to be the bit sequence "10". Once we have seen "10", then we will read in
bit-by-bit and always output the bit we read in last.
¢ The footer is also defined to be the bit sequence "10". If we are in the body, once we have seen a
"10" we are at the end of the data section.
e The FSM is initialized to detect headers. Whenever we are not within the body of the data or the
footer, it always outputs 0. Note that this buffer is infinitely long and should continue to detect a
header after finishing a footer.

Use labels/words for your states instead of 1’s and 0’s to make your life easier.
Note the following sample input -> output scheme:

Cycle 01:
Cycle 02:
Cycle 03:
Cycle 04:
Cycle 05:
Cycle 06:
Cycle 07:
Cycle 08:
Cycle 09:
Cycle 10:
Cycle 11:
Cycle 12:
Cycle 13:
etc...

0 -> 0 # garbage value
1 -> 0 # header

0 -> 0 # header

0 -> 0 #data

0 ->0#data
1->1#data

1-> 1 # footer

0 -> 0 # footer

1 -> 0 # garbage value
1 -> 0 # garbage value
1 -> 0 # garbage value
1 -> 0 # header

0 -> 0 # header

Place your solution in this box. Be sure to label the start state ((s) in the solution)

0/0 1/0

0/0

1/1 171

indicate which

M2-2) MIPS Pipeline (15 pts)

SID:

The code on the left is written for a single-cycle MIPS CPU. Put a star to the left of lines that are
involved in hazards (both the lines that cause and are affected by hazards), reorganize the code
order, and insert nops so that the code runs in as few cycles as possible on a 5-stage pipelined MIPS
CPU. Assume that the CPU has complete forwarding in the pipeline with load, branch and jump delay
slots; we have a branch comparator in the decode stage; but we do not have the ability to send

bubbles in the pipeline. You might not need all of the provided lines.

Start: We can move this line to right after the branch, because
it needs to get executed but doesn’t affect/depend on the

and $t4 $t1 ¢$t2 Other instructions before beg

ori $t5 $s0 OxXFFFF

add $t0 $t1 $t2

<= add $s0 $t2 $t3 Data hazard on next line, which is unavoidable so

we need to put in a nop

beg $s0 $t0 SomewhereControl hazard - a control hazard occurs whenever

<= there is a branch, because we don’t know whether we
addi $s2 $0 O are branching until after the Decode stage, so we
<= always execute the instruction immediately after the
Loop: Branch, so we sometimes need to insert a nop.
1w $s1 4($s0) Data hazard on next line
<=

addi #sl $s1 1 g .¢iing in unrelated addi

Data hazard on next line, which can be avoided by

<=
sSwW $s1 0($s0) This will definitely be executed if put after jal
addi $s2 $s2 1
jal DoStuff Control hazard
<=
addi $s0 $s0 4
<=
blt $sl1 $s2 Loop Control hazard, needs something to come after it
<= Start:
beq $sl1 $s2 Start Control hazard ori $t5 $s0 OXFFFF
<= add $t0 $t1 ¢$t2
add $s0 $t2 $t3
jr $ra <= nop
Data hazards occur when registers which are written to are then used as operands beq $s0 $t0 Somewhere
in some other instruction which follows soon after. However, because the CPU has and $t4 $tl $t2
forwarding, as soon as data leaves the ALU (or Memory if a load), it can be used addi $s2 %0 0
by another instruction in its Execute stage (or ID stage if it’s a branch. Loop:
Ex1: addi t0 x0 1 -~ data goes from end of Execute to beginning of next Execute, lw $s1 4($s0)
add t1t0 t0 requires no instructions between the two of them addi $s2 $s2 1
addi $sl1 $s1 1
Ex2: Iw t0 0(a0) — data goes from end of Memory to beginning of next Execute, jal DoStuff
add t1 t0 t0 requires one instructions between the two of them sw $sl 0($s0)
blt $sl1 $s2 Loop
Ex3: lw t0 0(a0) — data goes from end of Memory to beginning of next Decode, addi $s0 $s0 4
beq t0 t0 label requires two instructions between the two of them beg $sl $s2 Start
9/18 nop

jr $ra

SID:

M2-3) Cache Performance/AMAT (19 pts)
Each subproblem in this question can be done without the previous subproblems.
We have caches with the following configurations:
Cache-size: 1KiB, Block-size: 128B, Memory-size: 4 GiB, Write-policy: Write back and write-allocate

int rand(x,y); // defined elsewhere, returns a random integer in the range [x,Vy)
#define repcount 4

int A[1024*1024]; // block aligned

int B[8%1024]; // block aligned

// < Start (assume cache is cold)
for(int rep = 0; rep < repcount; rep++)
for (int i = 0; i < 1024; i++)
A[8*i] = B[8*i] + A[256*i + 8*i + rand(0, 32)] + A[8*i];
// <« Stop

For the following scenarios calculate the hit-rate and specify which types of misses are encountered
in the code between the lines marked start and stop. Assume all variables stay in registers and

memory reads happen left to right in each line.
Index bits = log_2(# sets) = log_2(#blocks/#ways)

a) i) Direct Mapped: # Tag/Index/Offset bits: [_ 22 : 3 D7]
i) What is the best-case hit rate? Also, state the types of misses.

- best case: A and B aren’t within the same index at the start

- 32 ints / block

- 4 ints / block are accessed with the A[8*i] and B[8*i] accesses

- A[256*i + 8*i + rand(0,32)] always accesses a new block which shares
same index as A[8*i] (since 256*i will make the addresses always differ by
a multiple of the cache size)

- rand() doesn’t affect anything

- B[8*1i] hits 3/4 of the time, because 4 consecutive accesses in same block
- A[256*i + 8*i + rand(0, 32)] always maps to same set as A[8*i] so
neither read will ever hit (256+*i means incrementing by 2A10 Bytes, a multiple of cache size)

- A[8*i] write always hits (directly after read)

1/4% (1) + 1/4*(3/4) + 0*(1/4)+ 0*(1/4) = 7/16
- We encounter compulsory, capacity (because entire working set does not fit in the cache
, and conflict misses (because if fully associative we would hit A[256*i + 8*i + rand(0,32)1])

iii) What is the worst-case hit rate? Also, state the types of misses.

- worst case: A and B are within the same index at the start

- Accesses keep replacing blocks except the write (since it directly
follows the read to A[8%*i]

- All misses except write
- Hit rate: 1/4*1 + 1/4*0 + 1/4*0 + 1/4%0 = 1/4
- We encounter compulsory, capacity, and conflict misses.

1118

SID:

b) i) 2-way Set Assoc: # Tag/Index/Offset bits: [_ 23 2 D7]
i) What is the worst-case hit-rate? Assume we use LRU replacement. ‘Also, state the types of misses.
- worst case: A and B are within the same index at start

- Consider what cache looks like at start:

- Load B[8*i], then load A[256*i + 8i+ rand(0, 32)], A[8*i] then kicks out
B[8*i], the write on A[8*i] then hits, the load of B[8*i] then replaces
A[256*i + 8i+ rand (0, 32)], A[256*i + 8i+ rand (0, 32)] then replaces
A[8*i], then the cycle repeats

- Thus the only hits are on the write
- Hit rate: 1/4*1 + 1/4*0 + 1/4*0 + 1/4*0 = 1/4
- We encounter compulsory, capacity, and conflict misses.

c) Calculate the AMAT in cycles if the L1 local hit rate is 60%, with a hit time of 1 cycle, the L2 global

hit rate is 20% with a hit time of 10 cycles and the main memory has a hit time of 200 cycles.
1+ 0.4%(10 + (1 - .2/.4) * 200) = 45

We always have to check L.1 Cache, if block isn’t there we need to check L2, if block
isn’t there we need to go to main memory.

AMAT = cache hit time + L1 local MR * L1 miss penalty

L1 miss penalty = L2 hit time + L.2 local MR * L2 miss penalty
L2 miss penalty = main memory hit time

L2 local HR * L.1 local MR = L2 global HR

L2 local MR =1 — L2 local HR

12/18

SID:

F1) MapReduce (12 pts)
You have been hired as a computer scientist for a retail company where your boss is trying to
optimize the location of his products in the store by analyzing the products bought by customers. He
decides that he wants you to take their existing code and add on MapReduce in order to analyze
giant logs of information more quickly.

a) Right now, the machine that you work on finishes the old program in 30 seconds. Your boss gives
you extra funds for a new machine that will be able to take existing code and have it finish in 10
seconds. You notice that 5/6 of the code is parallelizable. What is the minimum number of threads
your new machine has to have in order to achieve this speedup?

According to Ahmdal’s

30/10 = 1/[(1-(5/6) + ((5/6)/N)]

N =25

b) You now move on to working on MapReduce. Your boss, who loves hats, complains that sales for
hats are not great. Previously, he tried putting different colors of hats with items of similar type but
sales did not improve.

So, he proposes to take advantage of spatial information and wants to move the hats according to the
aisle number (10 in total) of other items that were bought by those who bought hats.

For example, if people have bought items in aisle 2 AND they bought a red hat, your boss wants to
consider moving red hats to aisle 2 because customers who buy items in aisle 2 has a higher
probability to buy a red hat.

You are given a customer log which contains:

(customer id, list(item object)) where item object is defined as:
item object {

int color // Color of product encoded as an integer
int product_id // The ID of the product; the ones digit of item id
} // corresponds to aisle number it is in (only 10 aisles)

Your output should be in the form of N key-value pairs (hat_color, aisle number) if there are N
unique hat colors bought in the customer log. These pairs should tell your boss where the different
colored hats should be put.

Also, assume you are given the following functions:

1) isHat (product_id) that takes a product ID and returns whether that product is a hat or not.
2) indexMax (array) thattakes an array and outputs the index of the largest value in the array.
3) setl.add(valuel) adds some value (valuel)to a set () named setl

You can access fields in an item_object using dot notation (e.g. item_obj.color)

Write pseudocode in the provided MapReduce functions on the following page so that at the end of
your reduce function, you will provide the best color hat that should be placed in each aisle.

13/18

F1) MapReduce (continued)

map (customer_id, item list) {
hats = set()
other_items = set()
for item in item list:

aisle number = item.product_id % 10

if (isHat(item.product_id)):

hats.add (item.color)

else:

// empty set
// empty set

SID:

other items.add(aisle number)

for hat in hats:
for item in other items:

emit (hat, item

}

reduce (key, values_list) {

totals = [0, O, O, O, O, O, O,

for item in values_1list

4 0l

totals[item] += 1

01]

emit (key, indexMax (totals)

14/18

Want to emit one key
value pair for every
combination of (hat
color, aisle of non-hat
item) that a particular
customer bought.

Then, there is an
implicit GroupByKey,
where the key is hat
color, and the value is
a list of aisles in which
customers who bought
a hat of that color
bought some other
non-hat item. We want
to know which aisle
was the most common
among customers who
bought a hat of that
color.

SID:

F2) Virtual Memory (20 pts)

For the following questions, assume the following (IEC prefixes are on your green sheet):
¢ You can ighore any accesses to instruction memory (code)

16 EiB virtual address space per process // 2% B
256 MiB page size // 2*® B
4 GiB of physical address space // 2°* B

Fully associative TLB with 5 entries and an LRU replacement policy

All arrays of doubles are page-aligned (start on a page boundary) and do not overlap
All arrays are of a size equivalent to some nonzero integer multiple of 256 MiB

All structs are tightly packed (fields are stored contiguously)

All accesses to structs and arrays go out to caches/memory (there is no optimization by
reusing values loaded into registers)

typedef struct { *double dbl; double fun;} doubleFun

void dblCpy(doubleFun* measurer, double* dblsToCpy) {
measurer->fun = 0;
for (uint32_t i = 0; i < ARRAY SIZE; i+=4) {
measurer->dbl[i] += dblsToCpyl[il;
measurer->fun += dblsToCpyl[il];
}
measurer->fun /= ARRAY SIZE;

}

/* Now, the code goes on to call the function dblCpy. Assume that space
for the array pointed to by measurer->dbl was allocated at some time in
the past and that all elements in the array were set to 0. The arrays
dblsToCpy and measurer->dbl are each of length ARRAY SIZE.*/

... // dblcpy function call here

a) Fill the following table: Recall that #VA offset bits == #PA offset bits

Virtual Page Number Bits: 36 Virtual Address Offset Bits: 28

Physical Page Number Bits: 4 Physical Address Offset Bits: 28

b) Assume the TLB has just been flushed. What TLB hit to miss ratio would be encountered if
sizeof(double) * ARRAY_SIZE = 256 MiB and we run the above code? Show your work.
6(2?°) TLB hit: 3 TLB misses

*Our loop has 22® / (2® * 2%) = 22 jterations. For each iteration, there are
6 memory accesses. For the loop entirely, there are 6(2?)) total memory
accesses.

*Before the loop, there is one memory access. After the loop there are two
memory accesses (read & write measurer-> fun).

Thus, there are 6(2))+3 total memory accesses. We require three pages,
one for dblsToCpy and two for doubleFun all that miss initially when
loading up. Thus, our hit-miss ratio is 6(2*): 3.

15/18

SID:

F2) Virtual Memory (continued)

c) In the best-case scenario, how many iterations can be executed with no TLB misses? Use IEC
prefixes when reporting your answer. Show your work.
2%* iterations = 16 MiB.

In the best case scenario, all 5 slots in the TLB are full of wvalid info.
We have 2 pages worth of measurer->dbl, 1 page for dbl->fun, and 2 pages
for dblsToCpy. This means that our arrays are 2?° B (2 pages) in length. We
index by every 4 elements of 8-byte doubles each time to obtain 2% / 2% /
2A3 = 2** jteratioms.

[EXTRA ROOM TO SHOW YOUR WORK BELOW.]
You have to put your final result under the problem. Any final result below this text will not be graded.

16/18

SID:

F3) Potpourri (17 pts)

a) What is the first positive integer divisible by 5 that is not representable by floating point
representation? (Hint: 2*" divided by 5 gives a remainder of 1 for any integer value of n)
2**+9 see next page for explanation

b) What is the fraction of integers in the range [2%°, 2%7) that are not representable in single-precision
IEEE 7547
7/8

c) Encode the following data value using Hamming ECC: 0b10010001100. Give your answer in hex.
Hamming-Encoded value in Hex: 0x590C

d) Suppose that we have a program that runs in 100 ns with 4 processors, but takes only 50ns
when run on 8 processors. What term describes the behavior of this program as we increase the
number of processors, extrapolating from the given data?

Strong scaling.

e) Which of the following choices correctly describes the given code? (Circle one). Explain your
choice.
omp_set _num_ threads (8) ;
#fipragma omp parallel
{

int thread_id = omp_get thread num() ;

for (int count=0; count < ARR SIZE/8*8; count+=8) {

arr[(thread id%4)*2 + (thread id/4) + count] = thread id;

}

}

A) Always correct, slower than serial

B) Always correct, speed depends on caching scheme
C) Always correct, faster than serial

D) Sometimes incorrect

E) Always incorrect

B)

Explain:

We have false sharing. Data is being written to adjacent areas of memory (in
the integer array arr, so multiple threads will be updating the same cache
Block at omce, leading to false sharing as the mmu has to keep all the block
up to date in every cache.

17/18

a) All integers of magnitude <= 2A24 - 1 are representable, because we can make any binary
string of length 24 (implicit one along with 23 mantissa bits), and then shift the decimal
place anywhere, including all the way to the right of those 24 significant bits (make
exponent = 23 + 127 = 150 to shift decimal to the right of 23 bit mantissa).

However, this is not to say that no integers greater than or equal to 224 can be represented.
Clearly, we can also choose to shift the decimal point further to the right than 23 places. For
example, we can make our exponent 151, and shift the decimal place 24 places to the right,
and also set our significand to be 000...01, we can make the value 2A24 + 2. We note that
2724 + 1 cannot be represented. In fact, we can represent no odd number greater than 2/24,
because that would require a 1 to end up in the 2A0 position after shifting the decimal 24
positions or more to the right, but that's impossible given that the mantissa is 23 bits long.
So, the first multiple of 5 we cannot represent is the first even multiple of 5 (multiple of 10)
that's greater than or equal to 2A24. This is 2/24 + 9.

b)

2/\26 has exponent 153, 2A27 has exponent 154, and both have mantissa of all 0s. You can
represent all the numbers between 226 and 2/27 which have exponent 153 and any
significand. These are all the integers which have Os in the 3 least-significant bit positions if
the integer is written as an unsigned binary number. Those integers which would have a 1 in
at least one of the 3 least-significant positions are not representable, because there are not
enough significand bits. Thus, 1/8 of the integers between 2A26 and 2/27 are representable.

C)

We proceed according to the Hamming encoding scheme/table. 11 bits means we need 4
parity bits in the following positions.

PP1P00O1P0001100

1st partity bit needs to make P+1+0+1+0+0+1+0even,soP1=1
substitute P1

1 P1P0OO0O1POO00 1100

2nd parity bit needs to makeP+1+0+1+0+0+0+0even,soP2=0
substitute P2

101 POO1 P0OOO 1100

3rd parity bit needs to makeP+0+0+1+1+1+0+0even,soP4=1
substitute P4

1011001 P0001100

4th parity bit needs to make P+0+0+0+1+1+ 0+ 0even, so P8 =0
substitute P8 to get full ECC encoded string 101 1001 0000 1100 = 0x590C

SID:

F3) Potpourri (continued)

f) In class, we discussed the different types of RAID. Fill in the blanks with all of the following
options that apply. Options can be reused for each question:
A) RAID1 B) RAID3 C) RAID4 D) RAID5 E) None

i) A single write can require 2 reads and 2 writes P+ ¢/ 4 - if data is Str%Ped' read data - read
Parity - write data - write parity

D - ex: two writes to 4 disks may use each disk
Just once (diskl gets datal, disk2 parityl, disk
3 data2, disk 4 parity2)

i) Can execute independent writes in parallel:

iif) Uses block striping: c, d
g) In RAID5, what logical gate is used to determine if new data does not match old data?
XOR, if XOR(datal, data2) != 0, data changed

h) Consider attaching a hard disk to a CPU. Should we use polling or interrupts to deal with the hard
disk? Should we use a DMA engine? Explain.

We should use DMA + interrupts. Since we transfer data in large chunks
(pages), it makes sense to give control to another program when we get a

page fault and let the DMA engine do the page transfer from disk to memory.
We then receive an interrupt when the transfer is completed.

i) (1pt) Extra Credit: What does the Cisco logo represent?

The Golden Gate Bridge

18/18

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

