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Instructions (Read Me!) 
x This booklet contains 8 numbered pages including the cover page.  

Put all answers on these pages; don’t hand in any stray pieces of paper. 
x Please turn off all pagers, cell phones & beepers. Remove all hats & headphones. Place your backpacks, 

laptops and jackets at the front.  Nothing may be placed in the “no fly zone” spare seat/desk between 
students. 

x You have 180 minutes to complete this exam. The exam is closed book, no computers, PDAs or calculators.  
You may use two pages (US Letter, front and back) of notes and the green sheet. 

x There may be partial credit for incomplete answers; write as much of the solution as you can. We will deduct 
points if your solution is far more complicated than necessary. When we provide a blank, please fit your 
answer within the space provided. “IEC format” refers to the mebi, tebi, etc prefixes. 

x You must complete ALL THE QUESTIONS, regardless of your score on the midterm. Clobbering only 
works from the Final to the Midterm, not vice versa. You have 3 hours... relax. 

  
Question M1 M2 M3 Ms  F1 F2 F3 F4 Fs  Total 
Minutes 20 20 20 60  30 30 30 30 120  180 
Points 10 10 10 30  22 23 22 23 90  120 

Score 10 10 10 30 
 

22 23 22 23 90 
 

120 
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M1) C/MIPS Question (10 pts, 20 mins) 
a) Finish the code for batoui, a recursive function that takes in a binary ASCII string of 0s and 1s 

(no more than 32) and returns the unsigned int the string represents. E.g., batoui(“110”)Î6.  
You may find the strlen function handy. E.g., strlen(“110”)Î3. (5 pts) 
 

uint32_t batoui(char *ba) { 
 
    if (*ba) { 
                ((uint32_t)(*ba-'0') << (strlen(ba)-1)) + batoui(ba+1)  
        return ( _____________________________________________________ ) ; 
 
    } 
 
    return 0; 
} 
 
b) Write the MAL MIPS function reverse_str(char *string, int string_length), that 

can reverse strings (with an even length) in-place.  The MIPS should be non-delayed branch, and 
you will probably not use all the lines. (5 pts) 

 
reverse_str: beq $a1 $0 done 
 addu $t0 $a0 $a1  
 ______________________________________ 
 addiu $t0 $t0 -1  
 ______________________________________ 
 lbu $v0 0($t0)  
 ______________________________________ 
 lbu $v1 0($a0)  
 ______________________________________ 
 sb $v0 0($a0)  
 ______________________________________ 
 sb $v1 0($t0)  
 ______________________________________ 
 addiu $a0 $a0 1  
 ______________________________________ 
 addiu $a1 $a1 -2  
 ______________________________________ 
 
 ______________________________________ 
 
 ______________________________________ 
 
 ______________________________________ 
 
 ______________________________________ 
 
 ______________________________________ 
 
 j reverse_str 
 
done: jr $ra  

save pointer (string + string_length) in register $t0

subtract that value by 1

load last character into register $v0

load first character into register $v1

swap the first and last characters

increment the string pointer

decrement the string_length by 2
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M2) Cache Money, y’all (10 pts, 20 mins) 
Assume we are working in a 32-bit virtual and physical address space, byte-address memory.  We 
have two caches: cache A is a direct-mapped cache, while cache B is fully associative with LRU 
replacement policy. Both are 4 KiB caches with 256 B blocks and write-back policy.  Show all work! 
                                                               24, 0, 8  
a) For cache B, calculate the number of bits used for the Tag, Index, and Offset: T:___ I:___ O:___ 
 
Consider the following code: 
 
 

  uint32_t H[32768];  // 32768 = 2^15. H is block-aligned. 
 
  for (uint32_t i = 0; i < 32768; i += 2048) H[i] += 1; 
  for (uint32_t i = 1; i < 32768; i += 2048) H[i] += 2; 
 
 
 Read is a comp / conflict miss write a hit within the loop  50%  
b) If the code were run on cache A, what would the hit rate be? ___________________________ % 
 
 
 
 For 1st loop miss on read, hit on write. For 2nd loop hits 75%  
c) If the code were run on cache B, what would the hit rate be? ___________________________ % 

 
 

 
d) Consider several modifications, each to the original cache A. How much will the modifications 

change the hit-rate and why? 
 

i. Same cache size, same block size, 2-way associativity 
 
 
Associativity too low, capacity misses first entries replaced before 
2nd loop --  no change 

ii. Double the cache size, same block size 
 
 
Still too many conflicts first entries replaced before 2nd loop—no 
change 

iii. Same cache size, block size is reduced to 8B  
 
 
Still conflict misses first entries replaced before 2nd loop -- No 
change 

e)  If you were allowed to modify the code while keeping functionality, what would be the maximum hit 
rate for the original cache A? Explain briefly. 

for (uint32_t i = 0; i < 32768; i += 2048) {H[i] +=1; H[i+1] += 1;} 
two read/writes in the loop, 1 miss 3 hits, so 75% hit rate 
 
  

O = log2(256B) = 8, I = 0 (since fully associative),
T = 32 - 0 - 8 = 24 

2 accesses each
(read + write)

In the first for-loop, the read access is a compulsory miss since it is the first time that the block is being accessed in the cache. The block is retrieved from memory and placed into the cache. The write access is a hit, giving a hit rate of 50%.
In the second for-loop, the accesses will be the same as the first loop, but the read access will be a conflict miss since the block has been in the cache previously but is no longer there. Similarly, the block will be retrieved from memory and placed into the cache. Write access is a hit again, giving a total overall hit rate of 50%

Cache B is a fully associative cache, so the first available block get filled. The cache holds 2^12/2^8 = 2^4 = 16 blocks. The array size is 2^15 integer = 2^17 bytes and the step size is 2^11 integer = 2^13 bytes. Therefore, each loop accesses 2^17/2^13 = 16 values meaning that every block accesses is stored in the cache. In the first loop, it is 50% with a compulsory read miss and write hit. However, in the second loop, we have a 100% hit since none of the blocks get replaced. This results in a combined hit rate of 75%. 

100%

75%

The step size of 2^13 bytes means we step over 2^5 = 32 blocks for each loop. This means that we step over the cache twice, hitting the same index each time. Therefore, the blocks in the first set of the cache would be constantly replaced before getting to the second loop.

Doubling the cache size means that the cache can hold 2^13/2^8 = 2^5 = 32 blocks. However, we still step over 32 blocks per loop, replacing the same blocks before the second loop.

Block size reduced to 8B means that the cache holds 2^12/2^3 = 2^9 = 512 blocks. However, this still does not change the fact that each loop steps over 2^13 bytes of data, meaning we step over 2^10 blocks each loop, still stepping through the cache twice, hitting the same index each time. It is still the same issue as the above two parts.

2

This modification allows you to functionally compute both for loops within one loop. This adds more accesses meaning more hits per block. This takes advantage of temporal locality by combining both for loops into one, and spatial locality by accessing H[i] and H[i+1].
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M3) What is that Funky Smell? Oh, it’s just Potpourri… (10 pts, 20 mins) 
a) By now you’ve heard that the view count on Psy’s “Gangnam Style” on YouTube had an integer 

overflow.  Your friend suggests they should have used a float instead.  Respond by filling in the 
blanks & show your work.  Don’t worry about off-by-1s: E.g., if it’s 1023, say “1 Kibi”. (4 pts) 
 
“Whereas an int32_t failed at (use IEC format) ____________, a float would have failed at 
 
(use IEC format) ___________, at which point f=f+1 would have…” (state what happens & why): 
int32_t = 2 Gibi, float = 16 Mebi. f would have failed to increment (f 
would have stayed the same) because floats lose the ability to count by 
ones OR would increment by 2 if rounding mode set to “toward +inf”. This 
is because floats have 23 mantissa bits, and since 224 + 1 = 224 + 20, it 
would require 24 mantissa bits to represent.  

 
 
 

b) Consider a new scheme to represent signed 
numbers in binary. It functions in the same 
fashion as any other radix, such as hexadecimal 
and binary, but uses a base of negative 2. Fill 
out the table below, assuming 6-bit numbers. 
The first row has been done for you. (2 pts) 
Show your work below: 

 
 
 

 
 

c) Complete the code below, using at most two TAL MIPS instructions, so that the function returns 
false if $a0 contains an R-type instruction and true otherwise. (2 pts) 

    lui $t0, 0xFC00 (or, it’s just 1 line: “srl $v0 $a0 26”)  
NotRType: ____________________________ 

and $v0, $a0, $t0  
____________________________ 

    jr $ra 
 
 
d) We are designing a 64-bit MIPS architecture (64-bit words, 64-bit instructions). We must support 

at least as many instructions as MIPS-32, and all MIPS-32 operations (add, lui, etc.) must be 
supported. If we wanted to maximize the number of registers each register field can address (all 
register fields should be the same width), what is the maximum number of registers we can 
address? Put your answer in IEC format and show your work. (2 pts) 

 
For R-type instructions: We need at least 6 bits for opcode, 6 bits for 
funct, 6 bits for shamt. This leaves us with 46 bits to be divided among 
three register fields.  
For I-type instructions: We need 6 bits for opcode and 32 bits for imm 
(for lui), leaving 26 bit to be divided among 2 instructions.  
Since we need to support both, we take the minimum, so each field can be 
at most 13 bits wide. Thus we can address 2^13, or 8 Kibi registers. 
  

 
where bi is the ith bit, M is the total # of bits. 

Base -2 Decimal 
000110 2 
010101 21 

110111 -13 
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F1) Madonna revisited: “We are Living in a Digital World” (22 pts, 23 mins) 
a) Give the simplest Boolean expression for the 

following circuit in terms of A and B, using the 
minimum number of AND, OR, and NOT gates:  

 
 
 
 
 
 
C = ___~A + B__________________ 
(You must show your work above to earn points.) 
 
 
 
 
 
b) Using as few states as possible, 

complete the following finite state 
machine that takes a ternary (base-3) 
digit as input (0, 1, or 2). This 
machine should output a 1 if the 
sequence of ternary digits forms an 
odd number, otherwise it should 
output a 0.  
 
Example: 1, 1, 2 → 1123 (1410) → 
even 
 
Assume you have seen no digits at 
the start state. You might not need all 
of the states, and you should not 
draw additional states. Finally, you 
will receive no credit for drawing 
something that is not an FSM!  

 
 
 
 
 
 
 
c) If the delay through a single-bit adder is 3 (measured in gate delays) to the sum output  

and 2 to the carry output, what is the delay through a k-bit ripple-carry adder?                     
 
2k+1 

  

C = (~(AB + ~A))B + (AB + ~A)
= ((~A + ~B)A)B + AB + ~A
= (~BA)B + AB + ~A
= AB + ~A
= ~A + B
(true if ~A or if A, can only be true if B) 

State A represents even number, 
state B represents odd number
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F2) V(I/O)rtual Potpourri (23 pts, 30 mins) 
For the following questions, assume the following: 

x 16-bit virtual addresses 
x 4 KiB page size 
x 16 KiB of physical memory with LRU page replacement policy 
x Fully associative TLB with 4 entries and an LRU replacement policy 

     
16 

a) What is the maximum number of virtual pages per process? ________________________ 
 

14 
b) How many bits wide is the page table base register? ________________________ 
 
For questions (c) and (d), assume that: 

x Only the code and the two arrays take up memory 
x The arrays are both page-aligned (starts on page boundary) 
x The arrays are the same size and do not overlap 
x ALL of the code fits in a single page and this is the only process running 

 
void scale_n_copy(int32_t *base, int32_t *copy, uint32_t num_entries,  

int32_t scalar) 
{ 
    for (uint32_t i=0; i < num_entries; i++) 
        copy[i] = scalar * base[i]; 
} 
 
c) If scale_n_copy were called on an array with N entries, where N is a multiple of the page size, 

how many page faults can occur in the worst-case scenario?  
 

N/(2^9) + 1 
Answer: ______________ 
 

d) In the best-case scenario, how many iterations of the loop can occur before a TLB miss? 
 

2^10 
Answer: ______________ 

 
e) Which type of RAID (0, 1, 2, etc.) does not provide any redundancy? What is the benefit of this 
type of RAID? 
Raid 0 has no redundancy. Large accesses are faster since disk transfer is 
parallelized. 
 
 
f) In one sentence, explain why polling may be a better choice than interrupts for capturing mouse 
cursor positions. 
Interrupts have more overhead than polling, so polling can be faster for 
slow, often ready devices like mice 
 
 
g) In one sentence, name a benefit Magnetic Disks have over Flash Memory (SSDs). 
Magnetic disks do not have a finite number of write cycles, unlike SSDs 

The page table base register points to the beginning of the page table of this current process in memory. There is 16 KiB of physical memory, represented by 14 bits

The virtual address is made of [VPN | offset]. # offset bits = log2(page size) = 12. This leaves 4 bits for the VPN. Max number pages representable with 4 bits is 2^4 = 16 pages

The physical memory can hold 4 pages. 1 pages is taken up by the code. Worse case scenario is a page fault for every page access. Considering 32-bit integers, there are 2^12 / 2^2 = 2^10 integers per page. Since there are 2 arrays, there are (N/(2^10))*2 = N / 2^9 faults for array access. We must add 1 more for a page fault in accessing the page with the code.

The best case scenario is if the TLB is filled with valid entries, 1 for the code, 1 for copy, 1 for base, and 1 other (either copy or base). Since we can only get through one page before either copy or base has to be fetched, we can get through 2^10 iterations (# of integers in one page).
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F3) Datapathology (22 pts, 30 mins) 
Consider the following instruction: jals $rt $rs imm. The instruction stores PC + 4 in register 
$rt. At the same time, it sets the PC to the value in register $rs offset by the sign-extended imm value.  
a) Write the register transfer language (RTL) corresponding to jals: 

R[rt] <- PC + 4; PC <- R[rs] + SignExtImm 
 
 
 

b) Change as little as possible in the 1-stage datapath below to support jals. In case of ties, pick the 
set of changes that maximizes the number of control signals that can be set to “don’t care”. Draw 
your changes directly in the diagram and describe your changes below. You may only add 
multiplexers, wires, splitters, tunnels, adders, and add or modify control signals.  

Describe your changes below: 
Add a mux to busW and add a new control signal “RegSrc” to control the mux. 
Connect the existing busW input and PC + 4 to the new mux. Connect the ALU output 
to the mux controlled by nPC_sel under port 3 (nPC_sel itself doesn’t need to be 
changed since it’s already a 2-bit signal) 
 
 
 
 
c) We now want to set the control lines appropriately. List what each signal should be, either by an 

intuitive name or {0, 1, “don’t care”, etc.}. Include any new control signals you added. 
RegDst RegWr nPC_sel ExtOp ALUSrc ALUctr MemWr MemtoReg RegSr

c 
  

0 1 3 Sign 1 Add 0 X ALU 
out 

  

 

For the following questions, assume we have taken the above CPU, 
converted it into a 5-stage CPU, and implemented forwarding.  
d) The code on the right was written for a non-pipelined CPU. After 

which instructions do nops need to be inserted? For each 
instruction, write the line number and number of nops. 

After line 4: 1 stall 
After line 6: 2 stalls 
  

1 la $t0, someFunc 
2 addi $sp, $sp, -4 
3 sw $ra, 0($sp) 
4 lb $t1, 0($a0) 
5 addi $a0, $t1, 0 
6 jals $ra, 0($t0)  
7 lw $ra, 0($sp) 
8 addi $sp, $sp, 4 

After line 4, we need 1 stall to wait for $t1 value. However, since forwarding is implemented, we only need to stall once to forward from MEM of line 4 to EX of line 5.
After line 6, we must stall by 2 cycles to determine the new PC after the EX stage.
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F4) What do you call two L’s that go together? (23 pts, 30 mins) 
The Hamming distance between two bitstrings of equal length is the number of locations in which the 
bits differ. For example, hamming(0b1011101, 0b1001001) Î 2. Consider the code below: 
 
    uint32_t hamming(uint32_t x, uint32_t y) { 
        uint32_t mask, ham_dist = 0; 
        for (int i = 0; i < 32; i++) { 
            mask = 1 << i; 
            if ((x & mask) != (y & mask)) { 
                ham_dist++; 
            } 
        } 
        return ham_dist; 
    } 
 

For questions a-c, assume we parallelize the for loop using OpenMP. 
 

a)  For each variable below, designate it as "shared" or "private" among threads. Do not mark a 
variable as private if it can be safely shared.  

x mask i 
shared private private 

  
b)  Is a data race on ham_dist possible? If yes, explain how to fix it. If no, explain why not. 
 

Yes, we need to add a #pragma omp critical and partial sums in each thread or use the reduction 
keyword. 
 

c) Is false sharing of the variables x, y possible? If yes, explain how to fix it. If no, explain why not. 
 
 
No, since we are not writing to them. 
 
d) Rank techniques A-C from best to worst for the given problems below. If there is a tie between 

improvements, you may list them in any order. 
A: parallel threads (e.g. OpenMP) 
B: parallel data (e.g. Intel SSE) 
C: distributed computing (e.g. MapReduce) 

 

i. We are computing on bit strings of length 1024 bits? 
 
A, B, C or B, A, C 

 
ii. We want to find the pairwise hamming distance between all the works of Shakespeare? 

 
C, A, B or C, B, A 

 
e) Your friend is analyzing a website and notices that database operations take up 2/3 of the 

webpage’s total loading time. Database operations previously took 200ms per request, and your 
friend reduced this down to 100ms. What is the speedup observed by the user? 

  3/2 

x can be shared since x does not get modified.
mask and i must be private since the values are specific to each for loop iteration 

Since we are incrementing ham_dist by 1, it is dependent on its current value. Each thread is modifying the global value of ham_dist, causing a data race.

speedup = 1 / ((1 - F) + F/S_E) = 1/((1/3) + (2/3)/2) = 3/2

lecture 18, slide 43 

When computing a 1024 bit string, the scale is so small that distributed computing would amount a lot of overhead. 
However, with all the works of Shakespeare, it would be the most efficient to spread out the work among many distributed systems as opposed to parallelizing in one system.


