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Problem 1

(a) Write down the Lagrangian L (x;, x5, X;, X,) for two particles of equal masses, m, = m, = m,
confined to the x axis and connected by a spring with potential energy U = %kxz‘ [Here x is the
extension of the spring, x = (x; — x, — ), where [ is the spring’s unstretched length, and I assume
that mass | remains to the right of mass 2 at all times.] (b) Rewrite L in terms of the new variables
X = }(x; + x,) (the CM position) and x (the extension), and write down the two Lagrange equations
for X and x. (¢) Solve for X (¢) and x(¢) and describe the motion.
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Problem 2

Two masses m; and m, move in a plane and interact by a potential energy U(r) = %krz. Write
down their Lagrangian in terms of the CM and relative positions R and r, and find the equations of
motion for the coordinates X, Y and x, y. Describe the motion and find the frequency of the relative

motion.
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Problem 3

On a certain planet, which is perfectly spherically symmetric, the free-fall acceleration has
magnitude g = g, at the North Pole and g = Ag, at the equator (with 0 < A < 1). Find g(#), the free-
fall acceleration at colatitude ¢ as a function of 6.
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Problem 4

A rigid body consists of three masses fastened as follows: m at (a, 0, 0), 2m at (0, a, a), and
3m at (0, a, —a). (a) Find the inertia tensor L. (b) Find the principal moments and a set of orthogonal
principal axes.
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Problem 5
Consider two identical plane pendulums (each of length L and mass m) that are joined by a
massless spring (force constant k) as shown below . The pendulums’ positions are specified

by the angles ¢, and ¢, shown. The natural length of the spring is equal to the distance between the
two supports, so the equilibrium position is at ¢; = ¢, = 0 with the two pendulums vertical. (a) Write
down the total kinetic energy and the gravitational and spring potential energies. [Assume that both
angles remain small at all times. This means that the extension of the spring is well approximated by

L(¢, — ¢;).] Write down the Lagrange equations of motion. (b) Find and describe the normal modes
for these two coupled pendulums.
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Problem 6

A bead of mass m is threaded on a frictionless wire that is bent into a helix with cylindrical polar
coordinates (p, ¢, z) satisfying z = ¢¢ and p = R, with ¢ and R constants. The z axis points vertically
up and gravity vertically down. Using ¢ as your generalized coordinate, write down the kinetic and
potential energies, and hence the Hamiltonian H as a function of ¢ and its conjugate momentum p.
Write down Hamilton’s equations and solve for ¢ and hence Z. Explain your result in terms of Newtonian
mechanics and discuss the special case that R = 0.



