Chem 12B Midterm 3

Instructor: Richmond Sarpong April 26th 2018 8:10–9:30 am, 100 Lewis

You have **80 minutes** to complete this exam. Please write your answers clearly only on the pages indicated <u>and be as detailed as possible</u>. Nothing written outside the numbered pages will be graded. There should be 9 total pages in this exam.

JID:	
GSI Name:	
Question	Score
1	(18 points)
2	(12 points)
3	(12 points)
4	(15 points)
5	(22 points)
6	(9 points)
7	(12 points)
Total	(10

Question 1 (18 points total):

(a) Classify the following transformations as either cycloadditions, electrocyclizations, cheletropic reactions, or sigmatropic rearrangements. (1 pt each)

(b) For each pericyclic reaction, provide a descriptor (e.g., [m+n] cycloaddition, [m,n] sigmatropic rearrangement, or $n\pi$ electrocyclization). (2 pts each)

Question 2 (12 points):

(a) Provide a molecular orbital picture to rationalize the observed outcome of the following Nazarov transformation (6 pts).

mo picture +2

me Sick the townder this Homo

Connotatory closure + 2

(b) Predict the stereochemistry of the following transformation (redraw in box) and provide a rationalization for your answer in three or less sentences (6 pts total)

me Gozme me me

Rationalization (4 pts):

Disrotatory closure because 845 tem of one

6 Tre-

Question 3 (12 points total):

(a) Provide rationalization for the observed differences in the relative rate of reaction (K_{rel}) for the following reactions in three sentences or less. (4 pts).

(b) Knowing that the reactions above proceed through an *endo* transition state, redraw **XY** showing the relative stereochemistry of all four stereocenters (3 pts) and provide a conformational drawing of the presumed transition state to rationalize your answer (5 pts).

Question 4 (15 Points total):

Provide the products of the following reactions knowing that they involve several steps including a Diels-Alder cycloaddition. Unless indicated, each reactant is 1 equiv (3 pts each).

Question 5 (22 points):

(a) Fill in the following boxes for the transformation of cyclohexene to bromodiene XX.

(b) Provide conditions that lead to YY from cyclohexene (2 pts each).

(c) **ZZ** forms as the minor product of the Fischer indolization type reaction that leads to **YY** in 5(b). Provide a mechanism for the formation of **ZZ** from the β -ketoester precursor shown in 5(b) (6 pts).

* Do not penalize for lack of Feverible arrows

Question 6 (9 pts)

Provide a mechanism for the following conversion to **AA** knowing that it involves an aza-Cope Mannich reaction.

Question 7 (12 points):

Propose a synthesis of FF using the materials in the Chem 12B stockroom as well as any other materials six carbons or less that you deem necessary. Hint: 2.2.2 bicycle **DD** is an intermediate in the synthesis.