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Physics Instructions 

In the absence of any information about the size of the objects, treat them as point masses. 
Assume that air resistance is negligible, and consider that the acceleration of gravity has 
magnitude g at the surface of the Earth.  
Remember that you need to show your work in order to get full credit! 
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Rotational inertias 
 

  



Problem 1 – Projectile game (25 pts)  

A skeet (clay target) of mass M is fired 

at an angle  from the horizontal with 
an initial speed v0. When it reaches the 
maximum height h, it is hit from 
below by a pellet of mass m traveling 
vertically upward at a speed v (Fig. 1). 
Right after the collision, the pellet is 
embedded in the skeet. 

 

 

 

 
 
a-  Determine the maximum height h reached by the skeet before the collision. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b-  Determine the magnitude and direction of the velocity of the skeet-pellet system 

right after the collision. 
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c-  By what distance d does the skeet-pellet system go higher than h due to the 
collision?  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d-  What is the horizontal distance L traveled by the skeet-pellet system after the 

collision? 
 
  



Problem 2 – Measuring Rotational Inertia (25 pts)  

The apparatus shown in Figure 2 is 
used to measure the rotational inertia 
I of an object of non-traditional shape. 
To perform the experiment, the object 
is mounted to a vertical axle held in a 
frame with essentially frictionless 
bearings. A spool of radius b is also 
mounted to the axle, and an ideal 
string is wrapped around the spool. 
The combination of axle and spool has 
a non-negligible rotational inertia I0 
whose value is known. The string 
runs horizontally over a frictionless 
pulley and is tied to a block of mass m. 
The mass is suspended a height h 
above the floor and the rotating 
system is initially at rest. Then the 

block is released, and we measure the 
time t that it takes for the block to 
reach the floor. 

 
Figure 2 

 
a-  Using kinematics, determine the acceleration a of the block after it is released, in 

terms of h and t. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b-  Determine the magnitude T of the tension force acting throughout the string in 

terms of m, g, h and t. 
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c-  Determine the rotational inertia I of the object in terms of m, g, h, t, b and I0. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d-  If you were to mount this particular object differently, would you anticipate the 

rotational inertia to be the same or not? 
 
 
 
  



Problem 3 – Cavendish experiment (25 pts)  
 
The apparatus constructed by 
Cavendish is a torsion balance (Fig.3) 
made of a horizontal rod of mass mr 
and length L suspended from a wire 
in the middle, with a small 
solid sphere of mass m and radius r 
attached to each end. Two larger and 
heavier solid balls of mass M and 
radius R are also located on a circle of 
radius L/2 from the torsion wire, and 
held in place with a separate 
suspension system (not shown in 
Fig.3). The two large balls are initially 
positioned along a line roughly 
perpendicular to the horizontal arm of 
the balance, initially in its equilibrium 

position (=0). The gravitational 
attraction causes the arm to rotate, 
twisting the wire supporting the arm 

by an angle and thereby bringing 
the small spheres a distance d away 
from the large ones.  You may 

consider that is close to 90 degrees, 
which results in a small angle and 

small distance between the large and 
small spheres. The wire has a 

torsional constant and can be 
considered massless.  
The experiment measures the faint 
gravitational attraction between the 
small balls and the larger ones, and 
provided the first accurate value of 
the gravitational constant G. 
 

 

 
a-  Assuming the system is in static equilibrium in translation, determine the 

magnitude of the net upward force acting against gravity on the system made of 
the wire, rod and 4 spheres. 
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b-  Establish the equation satisfied by the system when it reaches static equilibrium 
in rotation. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c-  Assuming that the distance d can be approximated by the length of the arc 

separating two closeby spheres, determine the gravitational constant G.  
 Hint: Use a proportionality equation based on the length of the circumference of a circle. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



d-  Explain why the gravitational force exerted by the Earth on the system does not 
play any role in the static equilibrium reached in rotation. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Problem 4 – Mass-spring systems and clamped rope (25 pts)  
 
A simple harmonic oscillator is a system that can be described by the following 

differential equation: 02

2

2

 x
dt

xd
 . In a traditional horizontal mass-spring system, 

the block of mass m, attached to an ideal spring of constant k, can slide without 
friction. 
 
a-  Establish the differential equation satisfied by the horizontal displacement x of 

the block, and determine the angular frequency  of the oscillator. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  



In a less traditional mass-spring system, the object attached to the spring is a solid 
disk of mass M and radius R that can roll without slipping, as shown in Figure 4. 
 
b-  Establish the differential equation 

satisfied by the horizontal 
displacement x of the center of 
mass of the disk, and determine 

the angular frequency  of the 
oscillator. Hint: Write the statement 
of energy conservation for this system 
and differentiate it. 

 
 

 

 
Figure 4 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
We consider a rope of length L, clamped at both ends, along which a sinusoidal 
wave travels in the (+x) direction. The reflected wave, which conserves the same 
amplitude and frequency, travels in the opposite direction after experiencing an 
inversion upon reflection. The interference between the two traveling waves results 
in a wave described by the following function of position and time: 

)sin()sin(2),( tkxAtxytot  , where A is the amplitude of the incoming (and 

reflected) wave, and k is the wave number. 
 



c-  From the mathematical expression of the resultant wave, explain why it qualifies 
as a standing wave. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

d-  Determine the condition that needs to be satisfied by the wavelength for the 
standing wave to exist on this rope clamped at both ends. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  



Problem 5 – Fluids (25 pts)  
 
Some mass mice of ice at temperature Tice is dropped in a thermos containing some 
mass mw of water at temperature Tw. The ice-water mixture can be considered as a 
closed system. Take Lf as the latent heat of fusion, cw as the specific heat of water 
and cice as the specific heat of ice. 
 
a-  Assuming that all the ice melts and reaches a temperature that is above the 

melting temperature, determine the equilibrium temperature Tf of the system. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The thermos, which can be considered as a cubic box of side length L, is actually not 
perfectly insulating and allows some heat to be exchanged by conduction. Take k as 
the thermal conductivity of the thermos and d its thickness (d<<L). 



b- Assuming that the rate of heat flow has reached a steady state, where the water 
in the thermos is at temperature Tf and the outside of the thermos is at ambient 
temperature Ta > Tf, determine the amount of heat exchanged during the time 

t. Specify the direction of the heat flow. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Some water, of density w, is initially 
at rest in a tank open to atmosphere, 
until the cap is removed from the 
opening, a height h below the initial 
surface of the water (Fig. 5.1). You 
may consider that the size of the hole 
is very small compared to the 
diameter of the tank. 

 

 
c-  Determine the initial speed v1 of the water that flows out of the tank, and explain 

if it increases or decreases as a function of time. 
 
 
 
 
 
 
 
 
 
 
 

h 

Figure 5.1 



 
 
 
 
 
 
 
 
 
 
 
A beaker contains a thick layer of oil 
of density ρ2 floating on water, which 
has density ρ3. A cubic block of wood 
of density ρ1 with side length L is 
gently lowered into the beaker, so as 
not to disturb the layers of liquid, 
until it floats peacefully between the 
layers, as shown in Figure 5.2.  
 
d-  What is the distance d between the top of the wood cube (after it has come to 

rest) and the interface between the oil and water? 
 
  

Figure 5.2 



Problem 6 – Thermodynamic Cycle (25 pts)  
n moles of an ideal diatomic gas undergo the following processes. From point A, 
whose thermodynamic state is defined by a pressure PA and volume VA, the gas 
undergoes an isothermal expansion (AB), followed by an isobaric compression (BC) 
at pressure PC, and an adiabatic compression (CA).  
 
a-  Based on the number of degrees of freedom of the gas, calculate the adiabatic 

exponent . Hint: the internal energy and therefore the specific heat at constant volume 
depend on the number of degrees of freedom of the gas. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b-  Determine the unknown pressures, volumes and temperatures of points A, B 

and C, and plot the cycle on a PV diagram. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



c-  Determine the net work Wnet done on the gas over a full cyclic process and 
comment on the sign. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d-  Determine the efficiency of a heat engine operating under the cyclic process 

(ABCA). The efficiency is given by 
in

net

Q

W
e  , where Qin is the heat input over the 

entire cycle. 
 
 
 
 
 
 
 

 
 
 

 
 

 
 

 
 


