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Midterm 1 Solutions

The exam is open notes, but access to the Internet is not allowed. The maximum grade is 20.
When asked to prove something, do not merely take an example; provide a rigorous proof
with clear steps. Also, some parts are more difficult than others and you are not expected
to finish the exam.

1. (2 points) Show that the Frobenius norm of a matrix A depends only on its singular
values. Precisely, show that

‖A‖F = ‖σ‖2,
where σ := (σ1, . . . , σr) is the vector formed with the singular values of A, and r is the
rank of A.

Solution: We present two solutions. Assume A ∈ Rm×n.

a) By re-writing this in terms of the squared Frobenius norm,

‖A‖2F = tr(ATA) =
n∑

i=1

λi(A
TA) =

r∑
i=1

λi(A
TA) =

r∑
i=1

σ2
i = ‖σ‖22 ,

the sum going to r because only the first r eigenvalues of A are non-zero.

b) We can use the SVD of A = UΣ̃V T , with Σ̃ = diag(σ1, . . . , σr, 0, . . . , 0), directly.
We have

‖A‖2F = ‖UΣ̃V T‖2F = tr(V Σ̃UTUΣ̃V T ) = tr(V Σ̃2V T ) = tr(Σ̃2V TV ) = tr Σ̃2,

which proves the result.

2. (8 points) We are given a matrix A ∈ Rm×n. We consider a matrix least-squares
problem

min
X
‖AX − Im‖F , (1)

where the variable is X ∈ Rn×m, and Im is the m×m identity matrix.

(a) Show that the problem can be reduced to a number of ordinary least-squares
problems, each involving one column of the matrix X. Make sure you define
precisely the form of these least-squares problems.

Solution: Let xj ∈ Rn denote the j-th column of A, so that X = [x1, . . . , xm].
We have AX − Im = [Ax1− e1, . . . , Axm− em], where ei is the i-th basis vector in
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Rm. Since the squared Frobenius norm of a matrix is the sum of squares of the
Euclidean norms of its columns, the objective function of our problem is

‖AX − Im‖2F = ‖[Ax1 − e1, . . . , Axm − em]‖2F =
m∑

i=1

‖Axi − ei‖22.

Note that the vector xi appears only once, in the i-th term of the sum. Hence,
to minimize the above objective function, we can simply minimize the i-th term
with respect to xi, independently of the other terms. That is:

min
X=[x1,...,xm]

‖AX − Im‖2F = min
x1,...,xm

m∑
i=1

‖Ax− ei‖22 =
m∑

i=1

min
x
‖Ax− ei‖22.

Hence, to solve our problem we can simply solve m ordinary least-squares prob-
lems, of the form

min
x
‖Ax− ei‖2, i = 1, . . . ,m.

If x∗i is an optimal solution for the above, then X = [x∗1, . . . , x
∗
m] is optimal for

our original problem.

(b) Show that, when A is full column rank, then the optimal solution is unique, and
given by

X∗ = (ATA)−1AT .

Solution: When A is full rank, the solution to the least-squares problem

min
x
‖Ax− y‖2

is unique, and given by x∗ = (ATA)−1ATy.

Applying this to y = ei, i = 1, . . . ,m, we obtain that the optimal X is unique,
and given by X∗ = [x∗1, . . . , x

∗
m], with x∗i = (ATA)−1AT ei, i = 1, . . . ,m. That is:

X∗ =
[
(ATA)−1AT e1 · · · (ATA)−1AT em

]
= (ATA)−1AT ·

[
e1 · · · em

]
= (ATA)−1AT · Im = (ATA)−1AT .

Another method is to simply take derivatives in the matrix problem. Indeed, the
objective Eq. (1) is convex in X, and the problem is unconstrained. Taking the
matrix derivative of ‖AX − Im‖2F , and setting it equal to zero, we have

2ATAX − 2AT Im = 0.

When A is full column rank, ATA is full rank and invertible, so we have X∗ =
(ATA)−1AT .

(c) Show that in general, a solution is X∗ = A†, the pseudo-inverse of A. Hint: use
the SVD of A, and exploit the fact that the Frobenius norm of a matrix is the
Euclidean norm of the vector formed with its singular values.
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Solution: We know that if x∗i is optimal for the ordinary least-squares problem

min
x
‖Ax− ei‖2,

then X∗ := [x∗1, . . . , x
∗
m] is optimal for the original problem.

Since x∗i = A†ei is optimal for the above problem, we obtain thatX∗ = [x∗1, . . . , x
∗
m] =

A† is optimal for the matrix problem.

(d) Assume that we would like to form an estimate X of the pseudo-inverse of a matrix
A that is as sparse as possible, while maintaining a good accuracy, expressed in
terms of the objective function of problem (1). How would you formulate the
corresponding trade-off? How would you use CVX to plot a trade-off curve?

Solution: Ideally, to enforce sparsity, we sould like to solve a problem of the form

min
X
‖AX − Im‖F + λ card(X) (2)

where card(X) denotes the cardinality (number of non-zeros) of X. This is,
however, wildly non-convex, so we relax Eq. (2) to the `1-regularized problem

min
X
‖AX − Im‖F + λ

∑
i,j

|Xij|. (3)

We can then increase or decrease λ to look at the trade-off in the error ‖AX? − Im‖F
in terms of sparsity in X?.1 CVX code is below, and in Fig. 1 we plot the error
in ‖AX − Im‖F versus the sparsity in X.

m = 20;

n = 10;

A = randn(m, n);

lambdas = [0 .02 .04 .08 .16 .32];

cvx_quiet(true);

Xs = cell(numel(lambdas), 1);

for i = 1:numel(lambdas);

lambda = lambdas(i);

cvx_begin

variable X(n, m);

minimize(norm(A*X - eye(m), ’fro’) + lambda * sum(sum(abs(X))));

cvx_end

Xs{i} = X.*(abs(X) > 1e-8);

end

splevel = zeros(numel(lambdas), 1);

errlevel = zeros(numel(lambdas), 1);

for i = 1:numel(lambdas)

1Note that if A is full row-rank (so that AX = Im is solvable), it may make sense to minimize
∑

i,j |Xij |
subject to AX = Im.
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Figure 1: Tradeoffs for sparsity in terms of reconstruction error.

splevel(i) = (n * m - nnz(Xs{i})) / (m * n);

errlevel(i) = norm(A*Xs{i} - eye(m), ’fro’);

end

figure;

plot(splevel, errlevel);

xlabel(’Proportion zero entries in $X$’, ...

’Interpreter’, ’latex’, ’fontsize’, 20);

h = ylabel(’$\|AX - I_m\|$’);

set(h, ’Interpreter’, ’latex’, ’fontsize’, 20);

3. (3 points) Let p0, p1, . . . , pm be a collection of (m + 1) points in Rn. Consider the set
of points closer (in Euclidean norm) to p0 than to the remaining points p1, . . . , pm:

P = {x ∈ Rn : ∀ i = 1, . . . ,m, ‖x− p0‖2 ≤ ‖x− pi‖2} .

Show that the set P is a polyhedron, and provide a representation of it in terms of the
problem’s data, as P = {x : Ax ≤ b}, where A is matrix and b a vector, which you
will determine.

Solution: There are (at least) two equally reasonable ways to solve this problem.
The first is to simply re-write the constraints and re-arrange symbols to give ourselves
polyhedral inequalities. That is, we note that

‖x− p0‖2 ≤ ‖x− pi‖2 iff ‖x− p0‖22 ≤ ‖x− pi‖22 ,
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and the second inequality can be re-written as

xTx− 2pT
0 x+ pT

0 p0 ≤ xTx− 2pT
i x+ pT

i pi ⇔ 2pT
i x− 2pT

0 x ≤ pT
i pi − pT

0 p0

⇔ (pi − p0)
Tx ≤ 1

2
(pi − p0)

T (pi + p0)

Evidently, then, if we set A ∈ Rm×n and b as

A =


(p1 − p0)

T

(p2 − p0)
T

...
(pm − p0)

T

 and b =
1

2


(p1 − p0)

T (p1 + p0)
(p2 − p0)

T (p2 + p0)
...

(pm − p0)
T (pm + p0)

 , (4)

we can write the set as P = {x : Ax ≤ b}.
A more geometric way of deriving the above is as follows. First, we recognize that we
will be intersecting a series of convex sets, so if we can describe ‖x− p0‖2 ≤ ‖x− pi‖2
as a linear inequality, we can simply stack the inequalities. Now, the set of points that
is closer to the point p0 than it is to the point pi is a half-space, and the normal to
the half-space is pi − p0. Now all that remains is to find the point on the line halfway
between p0 and pi, because this will be the point that gives the inequality defining
our half-space. Clearly, this point is (pi + p0)/2. See Fig. 2 for a picture. Thus, since
our normal is given by (pi − p0) and we know that all points in the half space must
be “closer” to p0 than the point (pi + p0)/2, we have all x in the half space satisfy
(pi − p0)

Tx ≤ (pi − p0)
T (pi + p0)/2, which gives the same linear inequalities as the

matrix A and vector b in Eq. (4).

p0

p1

1
2 (p0 + p1)

(p1 −p0)

Figure 2: Halfspace separation

4. (3 points) We consider a production planning problem. The variables xj ∈ R, j =
1, . . . , n, in the problem are activity levels (for example, production levels for different
products manufactured by a company). These activities consume m resources, which
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are limited. Activity j consumes Aijxj of resource i. (Ordinarily we have Aij ≥ 0,
that is, activity j consumes resource i, but we allow the possibility that Aij < 0, which
means that activity j actually generates resource i as a by-product.) The total resource
consumption is additive, so the total of resource i consumed is ci =

∑
j=1Aijxj . Each

resource consumption is limited:for every activity i, we must have ci ≤ cmax
i where cmax

i

are given. Activity j generates revenue rj(xj), where rj is a function of the form

rj(u) =

{
pju if 0 ≤ u ≤ qj,
pjqj + pdisc

j (u− qj) otherwise,

where qj > 0, pdisc
j > 0 are given parameters. The above revenue model says that

above a certain level of activity, the revenue is discounted, and not as high as for lower
activity level.

Show how to formulate the problem of maximizing revenue under the resource con-
straints as an LP.

Solution: We let our optimization variables be r and x, where rj corresponds to
the rj above. We want to maximize rj (our revenue) subject to the constraint that
rj ≤ min{pjxj, pjqj + pdisc

j (xj − qj)}, which is to say, rj is less than both. If we define
the matrices and vectors

P = diag(p1, . . . , pn), P disc = diag(pdisc
1 , . . . , pdisc

n ), q =

q1...
qn

 , cmax =

c
max
1
...

cmax
n


we can re-write the problem as

max
r,x

1T r

subject to Ax � cmax, x � 0

r � Px, r � Pq + P disc(x− q).

5. (4 points) Consider the unconstrained QP

p∗ = min
x

1

2
xTQx− cTx

where Q = QT ∈ Rn×n, Q � 0, and c ∈ Rn are given. The goal of this problem
is to determine the optimal value p∗ and the optimal set X opt, in terms of c and the
eigenvalues and eigenvectors of the (symmetric) matrix Q.

(a) Assume that Q � 0. Show that the optimal set is a singleton, and that p∗ is finite.
Determine both in terms of Q, c.

Solution: The problem is convex and unconstrained. Thus, the optimal set
is that of points such that the gradient of the objective is zero. Denoting the
objective functionby f , the optimality condition is

∇f(x) = Qx− c.
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Since Q � 0, Q is invertible, and there is a unique solution to Qx = c. Thus
x∗ = Q−1c is the unique optimal point, and

p∗ =
1

2
(x∗)TQx∗ − cTx∗ =

1

2
cTQ−1c− cTQ−1c = −1

2
cTQ−1c.

Assume from now on that Q is not invertible.

(b) Assume further that Q is diagonal: Q = diag(λ1, . . . , λn), with λ1 ≥ . . . ≥ λr >
λr+1 = . . . = λn = 0, where r is the rank of Q (1 ≤ r < n). Solve the problem in
that case. (You will distinguish between two cases.)

Solution: Partition the variable x in two parts: x = (y, z) with y ∈ Rr and
z ∈ Rn−r. Likewise partition c in two parts: c = (a, b) with a ∈ Rr and b ∈ Rn−r.
Since Q = diag(Λ, 0), with Λ = diag(λ1, . . . , λr), we have

f(x) =
1

2
xTQx− cTx =

1

2
yT Λy − aTy − bT z = f1(y) + f2(z),

where f1(y) = 1
2
yT Λy − aTy and f2(z) = bT z.

The above is a sum of two functions f1, f2 of independent variables y and z. Thus
our problem can be solved by minimizing f1 over y and f2 over z independently:

min
x=(y,z)

f1(y) + f2(z) = min
y

f1(y) + min
z

f2(z).

The minimization over y is exactly the same as in the previous part, since the
matrix Λ is positive definite. That is, the optimal y is unique, and given by
y∗ = Λ−1a.

For the minimization with respect to z, we distinguish two cases. Either the
vector b = 0, in which case the optimal value of minz f2(z) is zero, and any z is
optimal. Or, b 6= 0, in which case the corresponding optimal value is −∞ and the
problem is not attained.

To summarize:

• If b = 0, then the optimal set is the subspace

X opt =
{

(Λ−1a, z) : z ∈ Rn−r
}
,

and the optimal value is −1
2
aT Λ−1a.

• If b 6= 0, the optimal value is −∞, and the optimal set is empty (the optimal
value is not attained).

Note that the condition b = 0 can simply be expressed as c ∈ R(Q), where R(Q)
is the range of Q.

(c) Now we do not assume that Q is diagonal anymore. Under what conditions (on
Q, c) is the optimal value finite?
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Solution: Let Q = U Λ̃UT be the eigenvalue decomposition of the symmetric
matrix Q, with U orthogonal and Λ̃ = diag(Λ, 0), and Λ � 0 diagonal. Our
problem reads

min
x

1

2
xTUT Λ̃Ux− cTx = min

x̃

1

2
x̃T Λ̃x̃− c̃T x̃,

where x̃ := Ux, and c̃ = Uc. This change of variable allows us to go back to the
diagonal case, which we solved in the previous part.

Partition c̃ = (ã, b̃) with ã ∈ Rr the component of c̃ along the range of Λ̃, and
b̃ ∈ Rn−r the component of c̃ orthogonal to the range of Λ̃. We obtain that if b̃ 6= 0,
then the optimal value is −∞ and the optimal set is empty. This corresponds to
the case when c is not in the range of Q.

We conclude that the optimal value is finite if and only if c is in the range of Q.

(d) Determine the optimal value and optimal set. Be as specific as you can.

Solution: We present two solutions.

a) Assume that c is in the range of Q, so that the optimal value is finite. If
that is the case, then c is also in the range of Q1/2, because the ranges of Q and
its symmetric square root are identical (both matrices share the same system of
eigenvectors, and the range depends only on the eigenvectors).

Let d be such that c = Q1/2d. We can write our objective function, f , as

f(x) =
1

2
xTQx− cTx =

1

2
xTQx− dTQ1/2x =

1

2
‖Q1/2x− d‖22 − ‖d‖22.

Minimizing f amounts to solve the ordinary least-squares problem

min
x
‖Q1/2x− d‖2.

The solution set is
X opt = (Q1/2)†d+ N(Q1/2),

where N(Q1/2) is the range of Q1/2 is the range of Q1/2, which, as noted before
is the same as the range of Q itself. We can write the vector (Q1/2)†d in terms of
Q, c as follows:

(Q1/2)†d = Q†c.

Indeed, if Q = UT Λ̃U is an eigenvalue decomposition of Q, with Λ̃ = diag(Λ, 0),
and Λ � 0 diagonal, then

(Q1/2)†d = UT

(
Λ−1/2 0

0 0

)
Ud = UT

(
Λ−1 0

0 0

)
U︸ ︷︷ ︸

=Q†

UT

(
Λ1/2 0

0 0

)
d︸ ︷︷ ︸

=c

= Q†c.

Hence, if c ∈ Range(Q), we have

X opt = Q†c+ N(Q),
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where N(Q) is the nullspace of Q. The optimal value is the value of the objective
evaluated at any of the points in the optimal set. For example,

p∗ =
1

2
(Q†c)TQ(Q†c)− cTQ†c = −1

2
cTQ†c,

where we have exploited the fact that Q†QQ† = Q†.

b) Here is an alternative solution. We take the same notation as in the previous
part. Assume that b̃ = 0, that is, if c is in the range of Q, so that the optimal
value is finite. Then the optimal set (in the space of x̃-variables) is

X̃ =
{

(Λ−1ã, z) : z ∈ Rn−r
}
.

For every x̃ ∈ X̃ , we can write

x̃ = x̃0 +

(
0
z

)
,

where

x̃0 =

(
Λ−1 0

0 0

)(
ã

b̃

)
=

(
Λ−1 0

0 0

)
c̃

With c̃ = Uc:

x0 := UT x̃0 = UT

(
Λ−1 0

0 0

)
Uc = Q†c.

When z spans Rn−r, the vector (0, z) spans the nullspace of diag(Λ, 0), so that
the vector UT (0, z) spans the nullspace of Q.

Hence, if c ∈ Range(Q), the optimal set is

X opt = Q†c+ N(Q),

where N(Q) is the nullspace of Q.
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