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Math 54 Midterm 1 (001) 9.10am - 10am

This exam consists of 5 questions. Answer the questions in the
spaces provided.

1. (25 points) (a) Calculate the general solution to the linear system with the following
augmented matrix:

10 -1 0 1|1
00 1 2 1|-1
00 0 013
00 0 000
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(b) Will the above coefficient matrix always give a consistent linear system? Justify
your answer.
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2. (25 points) Calculate the determinant and inverse matrix of 00 -1 1
11 =10
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3. (25 points) Find all possible value of a, b, ¢ such that ( 1

-1
a b ¢c—110
b ¢ ¢+2|0
2¢ —b a 0

) is a solution to homogeneous

linear system
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4. (25 points) (a) Let A be a 4 x 5 matrix with the following properties:

The second column is non-zero and is a scalar multiple of the first.
column is not a scalar multiple of the first.

The third

Write the echelon form matrices which are potentially row equivalent to A.
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(b) Let two matrices A and B satisfy the above conditions. If T4 and Tz are both onto
must A and B be row equivalent? Justify your answer.
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5. (25 points) Let T : R®> — R* be a linear transformation such that

0 0 0 -1
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Calculate the standard matrix of T'. For what values of ¢ is T" one-to-one? For what
value of t is T" onto? Justify your answer.
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