
CS 61A Structure and Interpretation of Computer Programs
Spring 2018 Midterm 2 Solutions

INSTRUCTIONS

• You have 2 hours to complete the exam.

• The exam is closed book, closed notes, closed computer, closed calculator, except two hand-written 8.5" × 11"
crib sheet of your own creation and the official CS 61A midterm 1 and midterm 2 study guides.

• Mark your answers on the exam itself. We will not grade answers written on scratch paper.

Last name

First name

Student ID number

CalCentral email (_@berkeley.edu)

TA

Name of the person to your left

Name of the person to your right

All the work on this exam is my own.
(please sign)

POLICIES & CLARIFICATIONS

• If you need to use the restroom, bring your phone and exam to the front of the room.

• You may use built-in Python functions that do not require import, such as min, max, pow, len, and abs.

• You may not use example functions defined on your study guides unless clearly specified by the question.

• For fill-in-the blank coding problems, we will only grade work written in the provided blanks. You may only
write one Python statement per blank line, and it must be indented to the level that the blank is indented.

• Unless otherwise specified, you are allowed to reference functions defined in previous parts of the same question.

• You may use the Tree, Link, and BTree classes defined on Page 2 (left column) of the Midterm 2 Study Guide.

http://berkeley.edu

2

1. (10 points) Buggy Quidditch

For each of the expressions in the table below, write the output displayed by the interactive Python interpreter
when the expression is evaluated. The output may have multiple lines.

• If an error occurs, write Error, but include all output displayed before the error.

• To display a function value, write Function.

• If an expression would take forever to evaluate, write Forever.

The interactive interpreter displays the contents of the repr string of the value of a successfully evaluated
expression, unless it is None.

Assume that you have started python3 and executed the code shown on the left first, then you evaluate each
expression on the right in the order shown. Expressions evaluated by the interpreter have a cumulative effect.

1 class Ball:
2 points = 0
3 time = lambda: 'Draco'
4
5 def score(self, who):
6 print(who, self.points)
7
8 def __str__(self):
9 return 'Magic'

10
11 class Snitch(Ball):
12 points = 100
13 time = lambda: 'Harry'
14
15 def __init__(self):
16 self.points = self.points + 50
17
18 def score(self, p):
19 if not time():
20 print(Ball().score(p))
21 else:
22 Ball.score(self, p)
23
24 def chase(r):
25 r.time = Snitch.time
26 r.points += 1
27 quaffle.points += 10
28 print(r().points)
29
30 quaffle = Ball()
31 quaffle.points = 10
32 chasing = quaffle.score
33 time = lambda: Ball.points
34 malfoy = lambda: Ball.time()

Expression Interactive Output

Snitch().points 150

chasing(quaffle) Magic 10

Snitch().score('Seeker')
Seeker 0
None

chase(Ball) 1

Snitch().score(malfoy()) Harry 150

Name: 3

2. (6 points) NVRnment

Fill in the environment diagram that results from executing the code below until the entire program is finished,
an error occurs, or all frames are filled. You may not need to use all of the spaces or frames.

A complete answer will:

• Add all missing names and parent annotations to all local frames.

• Add all missing values created or referenced during execution.

• Show the return value for each local frame.

• Use box-and-pointer diagrams for lists and tuples.

Global ss = 1
def to(s):
 ix = s[1:2]
 ward[1] = 6
 def re(st):
 if st is not ward:
 nonlocal s
 s = s.extend(ix)
 return re(ward)
 else:
 st.append(ix)
 return re
ward = [3, 4] + list([5])
to(ward)(s)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

f1: ___________ [parent=____________]

Return Value

f2: ___________ [parent=____________]

Return Value

f3: ___________ [parent=____________]

Return Value

f4: ___________ [parent=____________]

Return Value

to

ward

func to(s) [parent=Global]

Globalto

1

list
0
3

1
6

2
5

3
4

4

list
0
4

s

ix

re

func re(st) [parent=f1]

None

None

None

1st

st

re

re

f1

f1

4

3. (12 points) Lists

Definition. A grid is a list of lists. Each list in a grid is called a row, and all rows must have the same length.
[[1, 2], [3, 4]] is a grid of integers, but [[1, 2], [3, 4, 5]] is not a grid.

(a) (2 pt) Implement column, which takes a grid g and a non-negative integer c that is smaller than the length
of a row in g. It returns a list containing the element at index c of each row in the grid.

def column(g, c):
"""Return the column of g at index c.

>>> column([[3, 4, 5], [6, 7, 8], [9, 10, 11]], 1)
[4, 7, 10]
"""

return [row[c] for row in g]

(b) (4 pt) Implement print_grid, which takes a grid g. It prints one line for each row in g. Line k displays
each element in row k, separated by the minimum number of spaces needed to align the left edges of the
str strings for the elements of each column of the grid. At least one space should appear between any two
elements. Extra spaces at the end of a line are ok. You may not use the column function above.
Assume that g has at least one row.

def print_grid(g):
"""Print each row on a separate line with columns aligned.

>>> print_grid([[1, 234, 50, 4, 5], [67, 8, 90, 0, 500], [3, 4, 5, -500, 7]])
1 234 50 4 5
67 8 90 0 500
3 4 5 -500 7
"""

cs = range(len(g[0]))

widths = [max([len(str(row[c])) for row in g]) for c in cs]

for row in g:

line = ''

for c in cs:

s = str(row[c])

line = line + s + ' ' * (widths[c] - len(s) + 1)

print(line)

Name: 5

(c) (4 pt) Implement expand, which takes a grid g, a number of rows h, a number of columns w, and a fill
value. It mutates the contents of g so that g has at least h rows and w columns. Any added values are fill.

def expand(g, h, w, fill):
"""Expand grid g so that it has at least h rows and w columns.

>>> g = [[1, 2, 3], [40, 50, 60]]

>>> print_grid(expand(g, 2, 5, 10))
1 2 3 10 10
40 50 60 10 10

>>> print_grid(expand(g, 5, 6, 0))
1 2 3 10 10 0
40 50 60 10 10 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

>>> print_grid(expand(g, 0, 0, 5))
1 2 3 10 10 0
40 50 60 10 10 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
"""
for row in g:

row.extend([fill] * (w - len(row)))
Alternate correct answer: row.extend([fill] * max(0, (w - len(row))))

for k in range(h - len(g)):
Alternate correct answer: range(max(0, h - len(g)))

g.append([fill] * w)
Note: This solution fails if w < len(g[0]) but h > len(g),
a case that was never demonstrated in the doctests.
So, it was given full credit.
A full-credit solution that works for all non-empty g is:
g.append([fill] * len(g[0]))
A correct solution that works for all g is more complicated:
g.append([fill] * ((g and len(g[0])) or w))

return g

(d) (2 pt) Circle the Θ expression that describes how many new values must be added when a grid with n rows
and n columns is expanded to 2×n rows and 2×n columns using the expand function. Assume that expand
is implemented correctly.

Θ(1) Θ(log n) Θ(n) Θ(n2) Θ(2n) None of these

6

4. (12 points) Sequences

(a) (6 pt) Implement stretch, which takes a Link instance s with no cycles. It mutates s so that, for each
position k in the original s, the kth element is repeated k times. You do not need to use the name i.

def stretch(s, repeat=0):
"""Replicate the kth element k times, for all k in s.

>>> a = Link(3, Link(4, Link(5, Link(6))))
>>> stretch(a)
>>> print(a)
<3, 4, 4, 5, 5, 5, 6, 6, 6, 6>
"""
if s is not Link.empty:

for i in range(repeat):

s.rest = Link(s.first, s.rest)

s = s.rest

stretch(s.rest, repeat + 1)

(b) (6 pt) Implement combo, which takes two non-negative integers a and b. It returns the smallest integer that
contains all of the digits of a in order, as well as all of the digits of b in order.

def combo(a, b):
"""Return the smallest integer with all of the digits of a and b (in order).

>>> combo(531, 432) # 45312 contains both _531_ and 4_3_2.
45312
>>> combo(531, 4321) # 45321 contains both _53_1 and 4_321.
45321
>>> combo(1234, 9123) # 91234 contains both _1234 and 9123_.
91234
>>> combo(0, 321) # The number 0 has no digits, so 0 is not in the result.
321
"""
if min(a, b) == 0:

return a + b

elif a % 10 == b % 10:

return combo(a // 10, b // 10) * 10 + a % 10

else:

return min(combo(a // 10, b) * 10 + a % 10,

combo(a, b // 10) * 10 + b % 10)

Name: 7

5. (10 points) Trees

Definition. A sibling of a node in a tree is another node with the same parent.

(a) (4 pt) Implement siblings, which takes a Tree instance t. It returns a list of the labels of all nodes in t
that have a sibling. These labels can appear in any order.

def siblings(t):
"""Return a list of the labels of all nodes that have siblings in t.

>>> a = Tree(4, [Tree(5), Tree(6), Tree(7, [Tree(8)])])
>>> siblings(Tree(1, [Tree(3, [a]), Tree(9, [Tree(10)])]))
[3, 9, 5, 6, 7]
"""

result = [b.label for b in t.branches if len(t.branches) > 1]

for b in t.branches:

result.extend(siblings(b))

return result

(b) (6 pt) Implement the Sib class that inherits from Tree. In addition to label and branches, a Sib instance
t has an attribute siblings that stores the number of siblings t has in Sib trees containing t as a node.
Assume that the branches of a Sib instance will never be mutated or re-assigned.

class Sib(Tree):
"""A tree that knows how many siblings it has.

>>> a = Sib(4, [Sib(5), Sib(6), Sib(7, [Sib(8)])])
>>> a.siblings
0
>>> a.branches[1].siblings
2
"""
def __init__(self, label, branches=[]):

self.siblings = 0

for b in branches:

b.siblings += len(branches) - 1

Tree.__init__(self, label, branches)

