Student Name:

Class Account Username:

Instructions: Read them carefully!

The exam begins at 1:10pm and ends at 2:30pm. You must turn your exam in when time is announced or risk not having it accepted.

Make sure you fill in your name and the above information, and that you sign below. Anonymous tests will not be graded.

Write legibly. If the person grading the test cannot read something, s/he will simply assume that you meant the illegible portion as a note to yourself and they will ignore it. If you lose points because part of your answer could not be read, you will not be given the opportunity to explain what it says.

Be clear and concise. The answers to most questions should be short. If you find yourself writing an excessively long response, you may want to think more carefully about the question. Long rambling answers generally get fewer points that short ones do because there are more opportunities to mark something wrong.

You may use one page of notes while taking the exam. You may not ask questions of other students, look at another student's exam, use a textbook, use a phone or calculator, or seek any other form of assistance. In summary: do not cheat. Persons caught cheating will be subject to disciplinary action.

Do not ask questions during the exam. Most questions are unnecessary and they disturb other students. Figuring out what the exam question is asking is part of the test. If you think you have to make some unusual assumption to answer a problem, note what that assumption is on the test.

I have read these instructions, I understand them, and I will follow them.

Your Signature: _____

Date:

Student ID:

Total Points: 226 + 6 You Scored: _____ + ____

1. Please fill in each of the blanks with an appropriate answer.

True or False: The dynamic than that of the human eye.	range of intens	ities that can	be displayed	d on a printed	l page is large
True or False: Humans are g there is a black band separat	lood at judging t ting them.	he relative briç	ghtness of tw	o squares on	a screen wher
Visible light falls roughly in the spectrum to	ne range of	nanometers at	the BLUE e	nometers at a	the RED end o
Fill in the two missing	colors: Red, Violet.			, Yellow,	Green, Blue
lengths) of light.	colors consist o	f a single wa	velength (or	very narrow	band of wave
The three types of cones in,	the human are o and	correctly refer	red to as the cones.		
The response curve of the r and	ods in the hum cones.	an eye peaks	between the	e	
True or False: Any color hum sources.	nans can see ca	n be reproduc	ed using any	<i>three</i> distinct	ctly colored ligh
cific lighting.	are distinct mate	rials that appe	ar to be the	same color u	nder some spe
i:	s the main phen	omenon that r	nakes the sk	y appear blue	9.
Without	, milk wo	uld appear ye	llowish.		

is the phenomenon that makes rainbow colors appear in oil slicks and peacock feathers.

page 2 of 13

2 points each blank, 88 Total

True of False: The BFGS function describes how much light coming in from one incoming direction goes out in another outgoing direction.

True of False: Snells's law describes how diffuse materials behave.

True of False: The exponent in the Phong shading model controls how transparent a material appears.

An _____ can be thought of as a perspective camera located "at infinity".

True or False: Mach banding tends to over emphasize edges so that shading may appear discontinuous.

True or False: Flat shading is named after the French computer graphics researcher Pierre Flat.

True or False: Shearing is a nonlinear transformation.

The rows and columns of a rotation matrix are always ______.

True of False: Matrix multiplication is associative.

True of False: Pasteurized coordinates are needed to allow perspective projection to be expressed as matrix multiplication.

Of the methods discussed in class for representing rotations, the method of _______ is least appropriate for interpolation due to singularities which include gimbal lock.

Rotation matrices in 3D generally have ______ (number) of complex eigenvalues.

In ray tracing, a ray from a point on an object's surface to the location of a light source is called a _____ ray.

A simple way of is to send many rays randomly distributed through a given pixel and average the result.
The implicit formula for a plane is
True or False: AABB Trees can be used to accelerate ray intersection tests for complex scenes.
Under linear perspective projection straight lines will always appears as
Under linear perspective projection spheres will generally appears as
An orthographic image contains how many finite vanishing points?
An linear perspective image contains how many vanishing points?
Bresenham's line drawing algorithm uses arithmetic.
A stores depth values and is used for hidden-surface removal when rendering a scene
In general, a triangle that is split by a plane will produce (number of) triangular pieces.
True of False: The implicit representation of a given surface is unique
True of False: When representing curves with cubic polynomials it is generally a bad idea to omit the linear term.
True of False: Any curve represented using the <i>cubic</i> Hermite C1 basis could also be represented using the <i>quadratic</i> B-Spline C2 basis.
The breaks a matrix A into A = U S V where U and V are orthonormal and S is diagonal.

A.(AxB) = Bx(Bx(AxB) = Bx(Bx(Bx(Bx(AxB)))=

3. You have two pieces of opaque <u>BLUE</u> plastic, pieces "A" and "B." When viewed under <u>sun-light</u> (light source "X") they look identical (blue) in color, but when viewed under <u>a fluores-cent light</u> (light source "Y") they look different. Draw a set of curves showing the spectral reflectance for A and B and spectral emissions for X and Y that could provide a reasonable explanation for this situation.

Note: Makes sure the curves you draw show plausible distributions. In other words, if you tried to draw a curve for "green" by making a hump centered at 700 nm, it would be wrong.

4. You have a sphere centered at [1,2,3] with radius 3, and a ray from [10,10,10] in the direction [-1,-1,-1]. Write the implicit equation for the sphere, the parametric equation for the ray, and compute the t-value of the intersection points. <u>Be neat and clear!</u> 15 points

Sphere equation:

Ray equation:

Intersection at t =

5. Circle the types of transformations that to be expressed in matrix form require homogenized coordinates. *5 points*

Translation Rotation Shear Scale

Perspective

6. Draw the *convex hull* that encloses four shapes shown:

6 points

7. One of the diagrams below shows a cube under orthographic projection, the other under perspective projection. Label which is which. *3 points*

8. Given a rotation encoded as an exponential map with the vector shown, write out a vector that express the inverse rotation. (units are degrees) 3 points

[1,45,30]

10. Write down plausible RGB values for the following materials:

6 points

page 7 of 13

- Glossy Metallic Green Kd = Ks =Glossy Plastic Cyan Kd = Ks =Flat Yellow
- Kd = Ks =
- 11. The diagram below shows control points for a curve made by joining two cubic Bezier segments. However control point #5 has been removed. Indicate location(s) where #5 may be placed to achieve C^1 continuity and where it may be placed to achieve G^1 continuity. Clearly label your diagram.

13. Circle the 3D homogenized matrix that would scale objects by 2x.

3 points

1	0	0	0	1	0	0	0	1	0	0	0]	$\begin{bmatrix} 2 \end{bmatrix}$	0	0	0
0	1	0	0	0	1	0	0	0	1	0	0	0	2	0	0
0	0	1	0	0	0	1	0	0	0	1	0	0	0	2	0
0	0	0	0	0	0	0	2	0	0	0	1/2	0	0	0	2

14. Let f(x,y) be a scalar function on the plane. Write out the expression for the upward pointing gradient. 6 points

15. Draw an example of 3 polygons that do not intersect, but that cannot be sorted in front-toback order from the viewer's perspective. 1 point

16. The following line segments will be inserted into a BSP Tree in the order indicated. As discussed in class, the lines themselves will be used to define the split planes. *The numbers are on the positive side of each line.*

Diagram the resulting tree below. If needed, show where line segments need to be split by marking on the above figure. Also, indicate the names of the split parts by writing labels on the figure above. (For example, if there were a segment 11 and it was to be split, you would draw a mark showing where it would be split and label the resulting pieces 11a and 11b.) 16 points

List the *back-to-front* traversal order that would result for the location indicated by the viewer icon (the star). 6 points

18. Draw a line clearly connecting each of these curves from the Cubic Hermite Basis with the feature it controls. *4 pts*

19. On the figure below write the appropriate letter in each of the blanks to label the diagram properly. Some of the letters are just there to confuse you. 8 points

- A Center of projection
- B Top clipping plane distance
- C End of all the things
- D Aspect ratio
- E Origin
- F View plane normal
- G Near clipping plane distance
- H View horizon

- I Bottom clipping plane distance
- J Distance to image plane
- K Left clipping plane distance
- L Alignment vector
- M Shadow ray
- N Right clipping plane distance
- O Far clipping plane distance
- P View up vector

20. Write out the transformation steps discussed in class for a perspective camera. It may help to refer to the previous question. 6 pts

21. Imagine that you have a RGB monitor where the wires have been swapped so that the red, green, and blue outputs from the computer have been respectively attached to the green, red, and blue inputs on the monitor. When one attempts to display the following colors, what colors will actually appear on the screen?

Cyan	 	
Magenta	 	
Yellow	 	
Red	 	
Green	 	
Blue	 	
Black	 	
White	 	

EXTRA CREDIT

+6 points

Given:

A line thru space defined by

$$\mathbf{l}(t) = \mathbf{a} + t \, \mathbf{b}$$

and a normal direction

 $\mathbf{\hat{n}}$

Write out a parametric equation for the plane containing the line and perpendicular to the normal.

When will the plane be undefined?

Your answer must be neat and clear, written out in the boxes. No points will be awarded for imprecise answers. You must get all parts right to earn any credit. (i.e. all or nothing) Do not attempt this question until you have completed the rest of the exam!