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Q1. [13 pts] Potpourri
(a) Probability

A P (A)
+a 0.8
–a 0.2

A B P (B|A)
+a +b 0.9
+a –b 0.1
–a +b 0.6
–a –b 0.4

B C P (C|B)
+b +c 0.8
+b –c 0.2
–b +c 0.8
–b –c 0.2

C D P (D|C)
+c +d 0.25
+c –d 0.75
–c +d 0.5
–c –d 0.5

Using the table above and the assumptions per subquestion, calculate the following probabilities given no
independence assumptions. If it is impossible to calculate without more independence assumptions, specify
the least number of of independence assumptions that would allow you to answer the question (don’t do any
computation in this case).

(i) [1 pt] P (+a,−b) = .8 ∗ .1 = .08

(ii) [1 pt] P (−a,−b,+c) = Given that C is independent of A given B

(iii) [1 pt] Now assume C is independent of A given B and D is independent of everything else given C.
Calculate P (+a,−b,+c,+d) = or say what other independence assumptions are necessary. .8 ∗ .1 ∗ .8 ∗ .25

(b) Independence

(i) [2 pts] Mark all expressions which indicate that X is independent of Y given Z.

� P (X,Y | Z) = P (X | Z)P (Y | Z)

� P (X,Y, Z) = P (X,Z)P (Y )

� P (X | Y, Z) = P (X | Z)

� None of the above

(ii) [2 pts] Fill in the circles of all expressions that are equal to P(R,S,T), given no independence
assumptions:

� P (R | S, T ) P (S | T ) P (T )

� P (T | R,S) P (R) P (S)

� P (R | S) P (S | T ) P (T )

� P (R | S, T ) P (S | R, T ) P (T | R,S)

� P (T, S | R) P (R)

� P (T | R,S) P (R,S)

� None of the above

(c) Bayes Nets

(i) [1 pt] During variable elimination, the ordering of elimination does not affect the final answer.

 True # False

(ii) [1 pt] During variable elimination, the ordering of elimination does not affect the runtime.

# True  False
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(d) [1 pt] Sampling For the following descriptions, provide the sampling method that is being described.

• Tally all of the values, but ignore anything that doesn’t match the conditional evidence. Rejection Sam-
pling

• Tally the values, weighting by the value of actually seeing that evidence based on the parents. Likelihood
Sampling

• Sample from the original joint distribution, ignoring the evidence. Prior Sampling

(e) [3 pts] Stationary Distributions

Consider a Markov chain with 3 states and transition probabilities as shown below:

A B C

0.75 0.25

0.75 0.5

0.25 0.5

Compute the stationary distribution. That is, compute P∞(A), P∞(B), P∞(C).

P∞(A) = 0.4
P∞(B) = 0.4
P∞(C) = 0.2
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Q2. [19 pts] More Advanced Problems
(a) [2 pts] Probability

Assume that Q, R, S, and T are all independent binary random variables. For the following probabilities,
assume you are given a table of all values of each probability. Write down what the sum of all of the values in
the table would equal (as a number). If it is impossible to tell, write down “Impossible”.

P (+r | S) =
Impossible

P (R, T | +s) =
1

P (R | Q,S, T ) =
8

P (R, T | +s,Q) =
2

(b) [3 pts] Sampling Consider the following Bayes Net and corresponding probability tables.

Fill in the following table with the probabilities of drawing each respective sample given that we are using each
of the following sampling techniques. For rejection sampling, we say that a sample has been drawn only if it
is not rejected. You may leave your answer in the form of an expression such as .8 · .4 without multiplying it
out. (Hint: P (f,m) = .181)

P (sample|method) (+r,+e,−w,+m,+f) (+r,−e,+w,−m,+f)
prior sampling .4 * .3 * .1 * .45 * .75 = .00405 .4 * .7 * .9 * .65 * .15 = 0.02457

rejection sampling P (+r,+e,−w,+m,+f)
P (+m,+f) = .00405

.181 = .0224 0

likelihood weighting P (+r)P (+e|+ r)P (−w|+ r) = .4 ∗ .3 ∗ .1 = .012 0
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(c) HMM

(i) [2 pts] Consider an HMM with state variables {Xi} and emission variables {Yi}. Which of the following
assertions are true?

� Xi is always conditionally independent of Yi+1 given Xi+1.

� There exists an HMM where Xi is conditionally independent of Yi given Xi+1.

� If Yi = Xi with probability 1, and the state space is of size k, then the most efficient algorithm
for computing p(Xt|y1 · · · , yt) takes O(k) or less time.

� If we take the Bayes net below for part (ii) and reverse the vertical arrows so that we have edges
from each Yi to Xi, the result is an HMM.

� None of the above

(ii) [7 pts]

Likelihood weighting.

X1 X2 X3

Y1 Y2 Y3

Assume each of the variables X1, X2, X3, Y1, Y2, Y3 are binary with domains {±1}. Assuming a uniform
starting distribution [.5, .5], and emission probabilities all equal to:

y PE(y| − 1) PE(y|1)
-1 .2 .7
1 .8 .3

And transition probabilities all equal to:

x PT (x| − 1) PT (x|1)
-1 .4 .6
1 .6 .4

Assume that the samples are (X1, X2, X3, Y1, Y2, Y3). Fill the following table with the samples’ likelihood
sampling weight (conditioning on X2 = 1 and Y3 = 1) and the probability of drawing the sample during
likelihood weighting (You can leave the desired values as products). If a sample is invalid, say so.

Index Sample Weight in Likelihood Sampling Probability of sample P (x1, x2, x3, y1, y2, y3)
1. (1,1,1,1,1,1)
2. (1,1,-1,1,-1,1)
3. (-1,1,-1,1,-1,1)
4. (1,-1,1,1,-1,-1)
5. (1,-1,-1,-1,1,1)

Index Sample Weight in Likelihood Sampling Probability of sample P (a, b, c, d, e, f)
1. (1,1,1,1,1,1) .4*.3 .5*.4*(.3)2

2. (1,1,-1,1,-1,1) .4*.8 .5*.6*.3*.7
3. (-1,1,-1,1,-1,1) .6*.8 0.5*.6*.8*.7
4. (1,-1,1,1,-1,-1) Invalid sample 0
5. (1,-1,-1,-1,1,1) Invalid sample 0

What is P (A = 1|B = 1, F = 1)?

P (A=1)P (B=1|A=1)
P (A=1)P (B=1|A=1)+P (A=−1)P (B=1|A=−1) = .4

Using Likelihood sampling what is P̂ (A = 1|B = 1, F = 1)?

.4∗.3+.4∗.8
.4∗.3+.4∗.8+.6∗.8 = 3+8

3+8+12 = 11
23 .
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(d) VPI Consider a decision network with the following structure, where node U is the utility:

A

B C

D

E

U

(i) [3 pts] For each of the following, choose the most specific option that is guaranteed to be true:

# V PI(B) = 0  V PI(B) ≥ 0 # V PI(B) > 0

 V PI(D) = 0 # V PI(D) ≥ 0 # V PI(D) > 0

# V PI(E) = 0  V PI(E) ≥ 0 # V PI(E) > 0

# V PI(A|E) = 0  V PI(A|E) ≥ 0 # V PI(A|E) > 0

 V PI(E|A) = 0 # V PI(E|A) ≥ 0 # V PI(E|A) > 0

 V PI(A|B,C) = 0 # V PI(A|B,C) ≥ 0 # V PI(A|B,C) > 0

Any node which is d-separated from the parents of the utility node is guaranteed to have 0 VPI. We
always have the guarantee that VPI ≥ 0, but since here we have no assumptions about the utility func-
tion, we could have U(B,C) = 0, in which case MEU will always be 0 regardless of the information we
have and thus VPI is 0.

(ii) [2 pts] For each of the following, fill in the blank with the most specific of >,≥, <,≤,= to guarantee that
the comparison is true, or write ? if there is no possible guarantee.

V PI(B) ? V PI(A)

If U depends only on B, then V PI(B) > V PI(A). If U depends only on C, then V PI(A) > V PI(B).
There exist scenarios in which both inequalities are true, so we can’t guarantee either.

V PI(B,C) ≥ V PI(A)

B and C together are more informative because the only influence A has on the utility goes through those
nodes. However, since we could again have U = 0, the inequality is not strict.

V PI(B,C) ? V PI(B) + V PI(C)

If B and C are two coin flips and the utility function is whether we can guess their XOR, then VPI
of either of them individually is 0, but their joint VPI is positive. On the other hand, if B and
C are deterministically equivalent, (for example, if the conditional distribution of both is such that
they are both identical to A and thus to each other), then V PI(B) = V PI(C) = V PI(B,C), so
V PI(B) + V PI(C) = 2 · V PI(B,C) > V PI(B,C).

V PI(B|C) ≥ V PI(A|C)

Conditioned on C, A only influences U through B, so B gives at least as much information.
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Q3. [12 pts] Variable Elimination

The following questions use the Bayes’ net below. All variables have binary domains:

(a) [6 pts] Karthik wants to see the ocean, and so decides to compute the query P (B,E,A,C,H). He wants you to
help him run variable elimination to compute the answer, with the following elimination ordering: I,D,G, F .
Complete the following description of the factors generated in this process:

He initially has the following factors to start out with:

P (A), P (B), P (C|B,G), P (D|I), P (E|A,B), P (F |E), P (G|E), P (H|C), P (I|C)

When eliminating I we generate a new factor f1 as follows:

f1(C,D) =
∑
i

P (i|C)P (D|i)

This leaves us with the factors:

P (A), P (B), P (C|B,G), P (E|A,B), P (F |E), P (G|E), P (H|C), f1(C,D)

When eliminating D we generate a new factor f2 as follows:

f2(C) =
∑
d

f1(C,D)

This leaves us with the factors:

P (A), P (B), P (C|B,G), P (E|A,B), P (F |E), P (G|E), P (H|C), f2(C)

When eliminating G we generate a new factor f3 as follows:

f3(C,B,E) =
∑
g

P (C|B, g)P (g|E)

This leaves us with the factors:

P (A), P (B), P (C|B,G), P (E|A,B), P (F |E), P (G|E), P (H|C), f2(C), f3(C,B,E)
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When eliminating F we generate a new factor f4 as follows:

f4(E) =
∑
f

P (f |E)

This leaves us with the following factors. Another acceptable answer involved noting the fact that summing
out the above factor yields 1, and so not appending f4(E) was fine.

P (A), P (B), P (C|B,G), P (E|A,B), P (G|E), P (H|C), f2(C), f3(C,B,E), f4(E)

(b) [2 pts] Among f1, f2, f3, f4, which is the largest factor generated, and how large is it? Assume all variables have
binary domains and measure the size of each factor by the number of rows in the table that would represent
the factor.

f2(A,+c, E, F ) is the largest factor generated. It has 3 non-instantiated variables, hence
23 = 8 entries.

(c) [4 pts] Given a list of all factors in a Bayes net, suppose that there exists a variable V that only occurs once
in the entire list. Which of the following statements must be true when running variable elimination?

� The factor containing variable V must have precisely 2 variables.

� Eliminating V produces a factor whose size is lesser than or equal to the largest factor size during
the full variable elimination process.

� Variable V must be a leaf node; that is, V cannot have any children nodes.

� The factor containing variable V must contain an even number of variables.

� The factor containing variable V must contain an odd number of variables.

� Variable V must appear on the left hand side of the conditioning bar, i.e. the |, in the factor that it
appears in.

� There must also exist a different variable W that appears only once in the entire list of factors.

� There must also exist a different variable W that appears more than once in the entire list of factors.

� None of the above

If a variable V appears only once in the list of factors, it cannot have any children (otherwise, it would appear
both on the left-hand side and the right-hand side of the conditioning bar). As such, the third and sixth choices
must be marked. Eliminating this variable produces a factor equal to one everywhere, so the size of the factor
produced must be lesser than or equal to the largest factor generated during the full elimination process.

The number of variables in the factor containing V can be any number; it’s just the number of parents of V
plus 1 (for V itself). As a counterexample to the last two options, consider the Bayes net where V is the only
variable. Then there isn’t a different variable W to begin with.
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Q4. [16 pts] Bayes’ Nets: Representation and Independence
Parts (a), (b), and (c) pertain to the following Bayes’ Net.

A B

C D E

F G

(a) [1 pt] Express the joint probability distribution as a product of terms representing individual conditional
probabilities tables associated with the Bayes Net.

P (A)P (C|A)P (B|A)P (D|B)P (E)P (F |D,E)P (G|D)

(b) [1 pt] Assume each node can take on 4 values. How many entries do the factors at A, D, and F have?

A: 4

D: 42

F: 43

(c) [2 pts] Mark the statements that are guaranteed to be true.

� B ⊥⊥ C
� A ⊥⊥ F
� D ⊥⊥ E|F

� E ⊥⊥ A|D

� F ⊥⊥ G|D

� B ⊥⊥ F |D

� C ⊥⊥ G
� D ⊥⊥ E
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Parts (d) and (e) pertain to the following probability distribution tables. The joint distribution P (A,B,C,D) is
equal to the product of these probability distribution tables.

A P (A)
+a 0.8
–a 0.2

A B P (B|A)
+a +b 0.9
+a –b 0.1
–a +b 0.6
–a –b 0.4

B C P (C|B)
+b +c 0.8
+b –c 0.2
–b +c 0.8
–b –c 0.2

C D P (D|C)
+c +d 0.25
+c –d 0.75
–c +d 0.5
–c –d 0.5

(d) [2 pts] State all non-conditional independence assumptions that are implied by the probability distribution
tables.

From the tables, we have A 6⊥⊥ B and C 6⊥⊥ D. Then, we have every remaining pair of variables: A ⊥⊥ C,A ⊥⊥
D,B ⊥⊥ C,B ⊥⊥ D

(e) [3 pts] Circle all the Bayes net(s) that can represent a distribution that is consistent with the tables given.

A B

C D

A B

C D

A B

C D

A B

C D

A B

C D

A B

C D

The question asks for Bayes Nets that can represent the distribution in the tables. So, in the nets we circle,
the only requirement must be that A and B must not be independent, and C and D must not be independent.

The top left, bottom left, and bottom right nets have arrows between the A-B nodes and the C-D nodes, so
we can circle those.

The top middle net has C and D as independent (D is not connected to anything), so we cannot circle it. The
bottom middle net has A and B as independent (common cause), so we cannot circle it.

The top right net seems like it could represent the distribution, because D-separation finds that: A and B are
not guaranteed to be independent (common effect), and C and D are not guaranteed to be independent (causal
chain). However, according to Part D, A ⊥⊥ C, A ⊥⊥ D, and B ⊥⊥ C, so all of the arrows in the net are vacuous.
That means, in this net, A and B are independent, and C and D are independent, so we cannot circle this net.
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You are building advanced safety features for cars that can warn a driver if they are falling asleep (A) and also
calculate the probability of a crash (C) in real time. You have at your disposal 6 sensors (random variables):

• E: whether the driver’s eyes are open or closed

• W : whether the steering wheel is being touched or not

• L: whether the car is in the lane or not

• S: whether the car is speeding or not

• H: whether the driver’s heart rate is somewhat elevated or resting

• R: whether the car radar detects a close object or not

A influences {E,W,H,L,C}. C is influenced by {A,S, L,R}.

(f) [2 pts] Draw the Bayes Net associated with the description above by adding edges between the provided nodes
where appropriate.

A S R

E W H L C

(g) [2 pts] Mark all the independence assumptions that must be true.

� E ⊥⊥ S
� W ⊥⊥ H|A

� S ⊥⊥ R
� E ⊥⊥ L

� L ⊥⊥ R|C

� W ⊥⊥ R
� A ⊥⊥ C
� E ⊥⊥ C|L

(h) [2 pts] The car’s sensors tell you that the car is in the lane (L = +l) and that the car is not speeding (S = −s).
Now you would like to calculate the probability of crashing, P (C|+ l,−s). We will use the variable elimination
ordering R, A, E, W , H. Write down the largest factor generated during variable elimination. Box your
answer.

Our factors if we don’t observe evidence are P (A), P (S), P (R), P (E|A), P (W |A), P (H|A), P (L|A), P (C|L,A, S,R).
We observe evidence, and we have: P (A), P (R), P (E|A), P (W |A), P (H|A), P (C|+ l, A,−s,R). We first elim-
inate R, so we select P (R) and P (C|+ l, A,−s,R) to get f1(C|+ l, A,−s). Now we eliminate A, so we select

P (A), P (E|A), P (W |A), P (H|A), f1(C|+ l, A,−s) and get f2(C,E,W,H|+ l,−s) . We see that this must be

the largest factor because this is the only factor we have left at this point, and variable elimination is not yet
finished.

(i) [1 pt] Write down a more efficient variable elimination ordering, i.e. one whose largest factor is smaller than
the one generated in the previous question.

Any ordering of the five variables where at least one of {E,W,H} is before A would be more efficient than the
previous ordering. As an example, R,E,W,H,A would work.
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Q5. [13 pts] VPI
You are the latest contestant on Monty Hall’s game show, which has undergone a few changes over the years.
In the game, there are n closed doors: behind one door is a car (U(car) = 1000), while the other n − 1 doors each
have a goat behind them (U(goat) = 10). You are permitted to open exactly one door and claim the prize behind it.

You begin by choosing a door uniformly at random.

(a) [2 pts] What is your expected utility?

Answer:

(1000 ∗ 1
n + 10 ∗ n−1

n ) or (10 + 990 ∗ 1
n )

We can calculate the expected utility via the usual formula of expectation, or we can note that there is a
guaranteed utility of 10, with a small probability of a bonus utility. The latter is a bit simpler, so the answers
to the following parts use this form.

(b) [4 pts] After you choose a door but before you open it, Monty offers to open k other doors, each of which are
guaranteed to have a goat behind it.
If you accept this offer, should you keep your original choice of a door, or switch to a new door?

EU(keep):

10 + 990 ∗ 1
n

EU(switch):

10 + 990 ∗ (n−1)
n∗(n−k−1)

Action that achieves MEU :

switch

The expected utility if we keep must be the same as the answer from the previous part: the probability that
we have a winning door has not changed at all, since we have gotten no meaningful information.
In order to win a car by switching, we must have chosen a goat door previously (probability n−1

n ) and then
switch to the car door (probability 1

n−k−1 ).
Since n− 1 > n− k − 1 for positive k, switching gets a larger expected utility.

(c) [2 pts] What is the value of the information that Monty is offering you?

Answer:

990 ∗ 1
n ∗

k
n−k−1

The formula for VPI is MEU(e)−MEU(∅). Thus, we want the difference between EU(switch) (the optimal
action if Monty opens the doors) and our expected utility from part (a).
(It is true that EU(keep) happens to have the same numeric expression as in part (a), but this fact is not
meaningful in answering this part.)

13



(d) [2 pts] Monty is changing his offer!
After you choose your initial door, you are given the offer to choose any other door and open this second door.
If you do, after you see what is inside the other door, you may switch your initial choice (to the newly opened
door) or keep your initial choice.
What is the value of this new offer?

Answer:

990
n

Intuitively, if we take this offer, it is as if we just chose two doors in the beginning, and we win if either door
has the car behind it. Unlike in the previous parts, if the new door has a goat behind it, it is not more optimal
to switch doors.
Mathematically, letting Di be the event that door i has the car, we can calculate this as P (D2 ∪ D1) =
P (D1) + P (D2) = 1/n+ 1/n = 2/n, to see that MEU(offer) = 10 + 990 ∗ 2

n . Subtracting the expected utility
without taking the offer, we are left with 990 ∗ 1

n .

(e) [3 pts] Monty is generalizing his offer: you can pay $d3 to open d doors as in the previous part. (Assume that
U($x) = x.) You may now switch your choice to any of the open doors (or keep your initial choice). What is
the largest value of d for which it would be rational to accept the offer?

Answer:

d =
√

990
n

It is a key insight (whether intuitive or determined mathematically) that the answer to the previous part is
constant for each successive door we open. Thus, the value of opening d doors is just d ∗ 990 ∗ 1

n . Setting this
equal to d3, we can solve for d.
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Q6. [13 pts] Sampling as an MDP
(a) (i) [1 pt] You are given a Bayes net with binary random variables A, B, C, D, and E. You want to estimate

P (A,B,C,E| + d) using rejection sampling. Which of the following quantities denotes the probability
that a sample will be rejected? (Mark all that apply.)

� P (+d)

� P (−d)

� 1− P (+d)

� 1− P (−d)

(ii) [1 pt] For the same Bayes net, you would like to estimate P (A,B,C| + d,+e) using rejection sampling.
Which of the following quantities denotes the probability that a sample will be rejected? (Mark all that
apply.)

� P (+d,+e)

� P (−d,−e)
� 1− P (+d,+e)

� 1− P (−d,−e)
� 1− P (+d)P (+e)

� 1− P (−d)P (−e)
(iii) [1 pt] For the same Bayes net, suppose additionally that D ⊥⊥ E. Which of the following quantities

denotes the probability that a sample will be rejected?

� P (+d,+e)

� P (−d,−e)
� 1− P (+d,+e)

� 1− P (−d,−e)
� 1− P (+d)P (+e)

� 1− P (−d)P (−e)

(b) [2 pts] Use the following Bayes Net for this question only :

A B

C D

E

In how many different orders could I sample from the random variables in this Bayes Net? (You may use simple
arithmetic operations in your answer.)

4

This is equal to the number of linear orders in the graph. Since
we can’t sample a node before sampling its parent, we must first sample A and B (but the order of the two
doesn’t matter), then sample C and D (but again the order doesn’t matter) then sample C. So the number of
orderings is 2× 2 = 4.
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(c) (i) [1 pt] In a general Bayes net over N random variables, what is the largest possible number of orderings
in which I could sample?

n!

Consider a Bayes net with no edges. Any ordering of the nodes is a valid sampling ordering.

(ii) [1 pt] What is the smallest possible number of orderings in which I could sample?

1

Consider a long causal chain. Since every node must be sampled before its children, there is only one valid
sampling ordering.

(d) Recall that rejection sampling is most efficient when we reject as early as possible. In general, it might be hard
to determine which sample ordering will make this possible. We’d like to formulate the problem as an MDP,
and use policy iteration to select an optimal ordering.

(i) [1 pt] The state space of this MDP will either be some collection of random variables, or (variable, value)
pairs. More specifically, which of the following is an appropriate minimal state representation for this
MDP? (Mark one.) Hint: it may be helpful to refer to the transition function described below.

# Set of variables that have been sampled so far (e.g. {A,B,D, · · · }).
 Set of (variable, value) pairs that have been sampled so far (e.g. {(A,+a), (B,−b), (D,+d), · · · }).
# Ordered list of variables pairs that have been sampled so far (e.g. {[A,B,D, · · · ]}).
# Ordered list of (variable, value) pairs that have sampled so far (e.g. {[(A,+a), (B,−b), (D,+d), · · · ]}).

We need to keep track of values because we can’t sample at a node if we don’t know the values we’ve
already chosen for its parents. But we can use a set, rather than a list, because the order in which we
sampled everything in the past doesn’t affect our ability to sample in the future.

(ii) [1 pt] If the Bayes net has N binary random variables, how big is this state space? (Choose the tightest
upper bound out of the answers given.)

# O(n)

# O(2n)

 O(3n)

# O(n!)

# O(2nn!)

# O(3nn!)

The answer to this question depends on the answer to the previous question. A set of variables takes O(2n)
space (an indicator on every variable for whether it’s in the set). A set of (variable, value) pairs takes
O(3n) space (every variable is either assigned a positive value, a negative value, or not). The list-valued
answers involve a term that is O(n(n+ 1)!) (there are n! states with n variables sampled, (n− 1)! states
with n− 1 variables sampled, etc.). O((n+ 1)!) is strictly greater than O(n!), and O(2nn!) is the tightest
upper bound.

The action space and transition function of this MDP are as follows: Every random variable corresponds to
an action. When we select a random variable, we sample a value from the corresponding distribution. If this
value causes the sampler to reject, we immediately transition to a terminal “sink state”. Otherwise, we add
the variable (or (variable, value) pair) to the collection chosen above.

(iii) [2 pts] If γ = 0.5, which of the following is an appropriate reward? Recall that we want to reward the
sampler for rejecting as quickly as possible. (Mark all that apply.)

� -1 per turn, and 0 if the sample is rejected

� 1 per turn, and 0 if the sample is rejected

� 0 per turn, and 1 if the sample is rejected
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� 0 per turn, and -1 if the sample is rejected

We want to reward the agent for rejecting the sample as quickly as possible. We can either do this by
punishing it for remaining alive (corresponding to a reward of -1 per turn), or rewarding for entering the
sink state (corresponding to a single final reward of 1). The second of these works only with a discount
factor less than 1, which means a reward in the near future is better than a reward in the far future.

(iv) [2 pts] If γ = 1.0, which of the following is an appropriate reward? (Mark all that apply.)

� -1 per turn, and 0 if the sample is rejected

� 1 per turn, and 0 if the sample is rejected

� 0 per turn, and 1 if the sample is rejected

� 0 per turn, and -1 if the sample is rejected

As in the previous question. But because γ = 1, the agent is indifferent between rejecting a sample now
and rejecting a sample arbitrarily far in the future, which means this is not a suitable reward.
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Q7. [19 pts] HMMs
Consider a process where there are transitions among a finite set of states s1, · · · , sk over time steps i = 1, · · · , N .
Let the random variables X1, · · · , XN represent the state of the system at each time step and be generated as follows:

• Sample the initial state s from an initial distribution P1(X1), and set i = 1

• Repeat the following:

1. Sample a duration d from a duration distribution PD over the integers {1, · · · ,M}, where M is the
maximum duration.

2. Remain in the current state s for the next d time steps, i.e., set

xi = xi+1 = · · · = xi+d−1 = s (1)

3. Sample a successor state s′ from a transition distribution PT (Xt|Xt−1 = s) over the other states s′ 6= s
(so there are no self transitions)

4. Assign i = i+ d and s = s′.

This process continues indefinitely, but we only observe the first N time steps.

(a) [2 pts] Assuming that all three states s1, s2, s3 are different, what is the probability of the sample sequence
s1, s1, s2, s2, s2, s3, s3? Write an algebraic expression. Assume M ≥ 3.

p1(s1)pD(2)pT (s2|s1)pD(3)p(s3|s2)(1− pD(1)) (2)

At each time step i we observe a noisy version of the state Xi that we denote Yi and is produced via a conditional
distribution PE(Yi|Xi).

(b) [1 pt] Only in this subquestion assume that N > M . Let X1, · · · , XN and Y1, · · · , YN random variables defined
as above. What is the maximum index i ≤ N − 1 so that X1 ⊥⊥ XN |Xi, Xi+1, · · · , XN−1 is guaranteed?
i = N −M

(c) [3 pts] Only in this subquestion, assume the max duration M = 2, and PD uniform over {1, 2} and each xi
is in an alphabet {a, b}. For (X1, X2, X3, X4, X5, Y1, Y2, Y3, Y4, Y5) draw a Bayes Net over these 10 random
variables with the property that removing any of the edges would yield a Bayes net inconsistent with the given
distribution.

X1

X2

X3

X4

X5

Y1 Y2 Y3 Y4 Y5
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(d) In this part we will explore how to write the described process as an HMM with an extended state space. Write
the states z = (s, t) where s is a state of the original system and t represents the time elapsed in that state. For
example, the state sequence s1, s1, s1, s2, s3, s3 would be represented as (s1, 1), (s1, 2), (s1, 3), (s2, 1), (s3, 1), (s3, 2).

Answer all of the following in terms of the parameters P1(X1), PD(d), PT (Xj+1|Xj), PE(Yi|Xi), k (total number
of possible states), N and M (max duration).

(i) [1 pt] What is P (Z1)?

P (x1, t) =

{
P1(x1) if t = 1

0 o.w.
(3)

(ii) [3 pts] What is P (Zi+1|Zi)? Hint: You will need to break this into cases where the transition function
will behave differently.

P (Xi+1, ti+1|Xi, ti) =


PD(d ≥ ti + 1|d ≥ ti) when Xi+1 = Xi and ti+1 = ti + 1 and ti+1 ≤M
PT (Xi+1|Xi)PD(d = ti|d ≥ ti) when Xi+1 6= Xi and ti+1 = 1

0 o.w.

Where PD(d ≥ ti + 1|d ≥ ti) = PD(d ≥ ti + 1)/PD(d ≥ ti).
Being in Xi, ti, we know that d was drawn d ≥ ti. Conditioning on this fact, we have two choices, if d > ti then the
next state is Xi+1 = Xi, and if d = ti then Xi+1 6= Xi drawn from the transition distribution and ti+1 = 1.
(4)

(iii) [1 pt] What is P (Yi|Zi)?
p(Yi|Xi, ti) = PE(Yi|Xi)
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(e) In this question we explore how to write an algorithm to compute P (XN |y1, · · · , yN ) using the particular
structure of this process.

Write P (Xt|y1, · · · , yt−1) in terms of other factors. Construct an answer by checking the correct boxes below:

P (Xt|y1, · · · , yt−1) = (i) (ii) (iii)

(i) [1 pt]

 ∑k
i=1

∑M
d=1

∑M
d′=1

# ∑k
i=1

∑M
d=1

# ∑k
i=1

# ∑M
d=1

(ii) [1 pt]

# P (Zt = (Xt, d)|Zt−1 = (si, d))

# P (Xt|Xt−1 = si)

# P (Xt|Xt−1 = sd)

 P (Zt = (Xt, d
′)|Zt−1 = (si, d))

(iii) [1 pt]

# P (Zt−1 = (sd, i)|y1, · · · , yt−1)

# P (Xt−1 = sd|y1, · · · , yt−1)

 P (Zt−1 = (si, d)|y1, · · · , yt−1)

# P (Xt−1 = si|y1, · · · , yt−1)

(iv) [1 pt] Now we would like to include the evidence yt in the picture. What would be the running time of
each update of the whole table P (Xt|y1, · · · , yt)?. Assume tables corresponding to any factors used in
(i), (ii), (iii) have already been computed.

# O(k2)

# O(k2M)

 O(k2M2)

# O(kM)

Note: Computing P (XN |y1, · · · , yN ) will take time N× your answer in (iv).

Just the running time for filtering when the state space is the space of pairs (xi, ti),

Given Bt−1(z), the step p(zt|y1, · · · , yt−1) can be done in time kM . (size of the statespace for z).

The computation to include the yt evidence can be done in O(1) per zt.

Therefore each update to the table per evidence point will take (Mk)2. So it is O((Mk)2).

Using N steps, the whole algorithm will take O(Nk2M2) to compute P (XN |Y1, · · · , YN ).

(v) [4 pts] Describe an update rule to compute P (Xt|y1, · · · , yt−1) that is faster than the one you discovered
in parts (i), (ii), (iii). Specify its running time. Hint: Use the structure of the transitions Zt−1 → Zt.

Answer is O(k2M + kM).

The answer from the previous section is:

P (Xt|y1, · · · , yt−1) =

k∑
i=1

M∑
d=1

M∑
d′=1

P (Zt = (Xt, d
′)|Zt−1 = (si, d))P (Zt−1 = (si, d)|y1, · · · , yt−1) (5)

To compute this value we only really need to loop through those transitions P (Zt = (Xt, d
′)|Zt−1 = (si, d))

that can happen with nonzero probability.

For all Xt = s we need to sum over all factors of the form P (Zt = (s, d′)|Zt−1 = (si, d))P (Xt−1 =
si|yi, · · · , yt−1). For a fixed s the factor P (Zt = (Xt, d

′)|Zt−1 = (si, d)) can be nonzero only when si = s
and d′ = d+ 1 (M tuples). And when si 6= s and d′ = 1 and d = 1, · · · ,M (kM tuples).

Since this needs to be performed for all k possible values of s, the answer to update the whole table is
O(k2M + kM).
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